Please note that IST Research Explorer no longer supports Internet Explorer versions 8 or 9 (or earlier).

We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.

80 Publications


2019 | Journal Article | IST-REx-ID: 7235 | OA
Lieb, E. H., & Seiringer, R. (2019). Divergence of the effective mass of a polaron in the strong coupling limit. Journal of Statistical Physics. https://doi.org/10.1007/s10955-019-02322-3
View | DOI | Download Published Version (ext.)
 

2019 | Journal Article | IST-REx-ID: 7413 | OA
Boccato, C., Brennecke, C., Cenatiempo, S., & Schlein, B. (2019). Bogoliubov theory in the Gross–Pitaevskii limit. Acta Mathematica, 222(2), 219–335. https://doi.org/10.4310/acta.2019.v222.n2.a1
View | DOI | Download Preprint (ext.) | arXiv
 

2019 | Preprint | IST-REx-ID: 7524 | OA
Deuchert, A., Mayer, S., & Seiringer, R. (n.d.). The free energy of the two-dimensional dilute Bose gas. I. Lower bound. ArXiv:1910.03372. ArXiv.
View | Files available | Download Preprint (ext.)
 

2019 | Journal Article | IST-REx-ID: 80 | OA
Deuchert, A., Seiringer, R., & Yngvason, J. (2019). Bose–Einstein condensation in a dilute, trapped gas at positive temperature. Communications in Mathematical Physics, 368(2), 723–776. https://doi.org/10.1007/s00220-018-3239-0
View | Files available | DOI
 

2018 | Journal Article | IST-REx-ID: 180 | OA
Lewi, M., Lieb, É., & Seiringer, R. (2018). Statistical mechanics of the uniform electron gas. Journal de l’Ecole Polytechnique - Mathematiques, 5, 79–116. https://doi.org/10.5802/jep.64
View | Files available | DOI | Download Published Version (ext.)
 

2018 | Journal Article | IST-REx-ID: 446 | OA
Frank, R., Phan Thanh, N., & Van Den Bosch, H. (2018). The ionization conjecture in Thomas–Fermi–Dirac–von Weizsäcker theory. Communications on Pure and Applied Mathematics, 71(3), 577–614. https://doi.org/10.1002/cpa.21717
View | DOI | Download Preprint (ext.) | arXiv
 

2018 | Journal Article | IST-REx-ID: 455 | OA
Benedikter, N. P., Sok, J., & Solovej, J. (2018). The Dirac–Frenkel principle for reduced density matrices and the Bogoliubov–de Gennes equations. Annales Henri Poincare, 19(4), 1167–1214. https://doi.org/10.1007/s00023-018-0644-z
View | Files available | DOI
 

2018 | Thesis | IST-REx-ID: 52 | OA
Moser, T. (2018). Point interactions in systems of fermions. IST Austria. https://doi.org/10.15479/AT:ISTA:th_1043
View | Files available | DOI
 

2018 | Journal Article | IST-REx-ID: 554 | OA
Napiórkowski, M. M., Reuvers, R., & Solovej, J. (2018). The Bogoliubov free energy functional II: The dilute Limit. Communications in Mathematical Physics, 360(1), 347–403. https://doi.org/10.1007/s00220-017-3064-x
View | DOI | Download Submitted Version (ext.) | arXiv
 

2018 | Journal Article | IST-REx-ID: 5983 | OA
Yakaboylu, E., Midya, B., Deuchert, A., Leopold, N. K., & Lemeshko, M. (2018). Theory of the rotating polaron: Spectrum and self-localization. Physical Review B, 98(22). https://doi.org/10.1103/physrevb.98.224506
View | DOI | Download Preprint (ext.) | arXiv
 

2018 | Journal Article | IST-REx-ID: 6002 | OA
Napiórkowski, M. M., Reuvers, R., & Solovej, J. P. (2018). The Bogoliubov free energy functional I: Existence of minimizers and phase diagram. Archive for Rational Mechanics and Analysis, 229(3), 1037–1090. https://doi.org/10.1007/s00205-018-1232-6
View | DOI | Download Preprint (ext.) | arXiv
 

2018 | Journal Article | IST-REx-ID: 295 | OA
Lundholm, D., & Seiringer, R. (2018). Fermionic behavior of ideal anyons. Letters in Mathematical Physics, 108(11), 2523–2541. https://doi.org/10.1007/s11005-018-1091-y
View | Files available | DOI | arXiv
 

2018 | Journal Article | IST-REx-ID: 399 | OA
Napiórkowski, M. M., Reuvers, R., & Solovej, J. (2018). Calculation of the critical temperature of a dilute Bose gas in the Bogoliubov approximation. EPL, 121(1), 10007. https://doi.org/10.1209/0295-5075/121/10007
View | DOI | Download Preprint (ext.) | arXiv
 

2018 | Journal Article | IST-REx-ID: 400 | OA
Deuchert, A., Geisinge, A., Hainzl, C., & Loss, M. (2018). Persistence of translational symmetry in the BCS model with radial pair interaction. Annales Henri Poincare, 19(5), 1507–1527. https://doi.org/10.1007/s00023-018-0665-7
View | Files available | DOI
 

2018 | Conference Paper | IST-REx-ID: 11 | OA
Leopold, N. K., & Pickl, P. (2018). Mean-field limits of particles in interaction with quantised radiation fields (Vol. 270, pp. 185–214). Presented at the MaLiQS: Macroscopic Limits of Quantum Systems, Munich, Germany: Springer. https://doi.org/10.1007/978-3-030-01602-9_9
View | DOI | Download Preprint (ext.) | arXiv
 

2018 | Journal Article | IST-REx-ID: 154 | OA
Moser, T., & Seiringer, R. (2018). Stability of the 2+2 fermionic system with point interactions. Mathematical Physics Analysis and Geometry, 21(3). https://doi.org/10.1007/s11040-018-9275-3
View | Files available | DOI
 

2017 | Journal Article | IST-REx-ID: 484 | OA
Nam, P., & Napiórkowski, M. M. (2017). Bogoliubov correction to the mean-field dynamics of interacting bosons. Advances in Theoretical and Mathematical Physics, 21(3), 683–738. https://doi.org/10.4310/ATMP.2017.v21.n3.a4
View | DOI | Download Submitted Version (ext.)
 

2017 | Journal Article | IST-REx-ID: 632 | OA
Lewin, M., Nam, P., & Rougerie, N. (2017). A note on 2D focusing many boson systems. Proceedings of the American Mathematical Society, 145(6), 2441–2454. https://doi.org/10.1090/proc/13468
View | DOI | Download Submitted Version (ext.)
 

2017 | Journal Article | IST-REx-ID: 739 | OA
Nam, P., & Napiórkowski, M. M. (2017). A note on the validity of Bogoliubov correction to mean field dynamics. Journal de Mathématiques Pures et Appliquées, 108(5), 662–688. https://doi.org/10.1016/j.matpur.2017.05.013
View | DOI | Download Submitted Version (ext.)
 

2017 | Journal Article | IST-REx-ID: 741 | OA
Moser, T., & Seiringer, R. (2017). Stability of a fermionic N+1 particle system with point interactions. Communications in Mathematical Physics, 356(1), 329–355. https://doi.org/10.1007/s00220-017-2980-0
View | Files available | DOI
 

Filters and Search Terms

department=RoSe

Search

Filter Publications