Please note that IST Research Explorer no longer supports Internet Explorer versions 8 or 9 (or earlier).

We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.

84 Publications


2018 | Journal Article | IST-REx-ID: 295 | OA
Lundholm, D., & Seiringer, R. (2018). Fermionic behavior of ideal anyons. Letters in Mathematical Physics. Springer. https://doi.org/10.1007/s11005-018-1091-y
View | Files available | DOI | arXiv
 

2018 | Journal Article | IST-REx-ID: 455 | OA
Benedikter, N. P., Sok, J., & Solovej, J. (2018). The Dirac–Frenkel principle for reduced density matrices and the Bogoliubov–de Gennes equations. Annales Henri Poincare. Birkhäuser. https://doi.org/10.1007/s00023-018-0644-z
View | Files available | DOI
 

2018 | Journal Article | IST-REx-ID: 399 | OA
Napiórkowski, M. M., Reuvers, R., & Solovej, J. (2018). Calculation of the critical temperature of a dilute Bose gas in the Bogoliubov approximation. EPL. IOP Publishing Ltd. https://doi.org/10.1209/0295-5075/121/10007
View | DOI | Download Preprint (ext.) | arXiv
 

2018 | Journal Article | IST-REx-ID: 400 | OA
Deuchert, A., Geisinge, A., Hainzl, C., & Loss, M. (2018). Persistence of translational symmetry in the BCS model with radial pair interaction. Annales Henri Poincare. Springer. https://doi.org/10.1007/s00023-018-0665-7
View | Files available | DOI
 

2018 | Journal Article | IST-REx-ID: 446 | OA
Frank, R., Nam, P., & Van Den Bosch, H. (2018). The ionization conjecture in Thomas–Fermi–Dirac–von Weizsäcker theory. Communications on Pure and Applied Mathematics. Wiley-Blackwell. https://doi.org/10.1002/cpa.21717
View | DOI | Download Preprint (ext.) | arXiv
 

2018 | Journal Article | IST-REx-ID: 154 | OA
Moser, T., & Seiringer, R. (2018). Stability of the 2+2 fermionic system with point interactions. Mathematical Physics Analysis and Geometry. Springer. https://doi.org/10.1007/s11040-018-9275-3
View | Files available | DOI
 

2018 | Journal Article | IST-REx-ID: 554 | OA
Napiórkowski, M. M., Reuvers, R., & Solovej, J. (2018). The Bogoliubov free energy functional II: The dilute Limit. Communications in Mathematical Physics. Springer. https://doi.org/10.1007/s00220-017-3064-x
View | DOI | Download Submitted Version (ext.) | arXiv
 

2018 | Journal Article | IST-REx-ID: 5983 | OA
Yakaboylu, E., Midya, B., Deuchert, A., Leopold, N. K., & Lemeshko, M. (2018). Theory of the rotating polaron: Spectrum and self-localization. Physical Review B. American Physical Society. https://doi.org/10.1103/physrevb.98.224506
View | DOI | Download Preprint (ext.) | arXiv
 

2018 | Journal Article | IST-REx-ID: 6002 | OA
Napiórkowski, M. M., Reuvers, R., & Solovej, J. P. (2018). The Bogoliubov free energy functional I: Existence of minimizers and phase diagram. Archive for Rational Mechanics and Analysis. Springer Nature. https://doi.org/10.1007/s00205-018-1232-6
View | DOI | Download Preprint (ext.) | arXiv
 

2018 | Thesis | IST-REx-ID: 52 | OA
Moser, T. (2018). Point interactions in systems of fermions. IST Austria. https://doi.org/10.15479/AT:ISTA:th_1043
View | Files available | DOI
 

Filters and Search Terms

department=RoSe

Search

Filter Publications