Molecular impurities interacting with a many-particle environment: From ultracold gases to helium nanodroplets

Lemeshko M, Schmidt R. 2017.Molecular impurities interacting with a many-particle environment: From ultracold gases to helium nanodroplets. In: Cold Chemistry: Molecular Scattering and Reactivity Near Absolute Zero . Theoretical and Computational Chemistry Series, vol. 11, 444–495.


Book Chapter | Published | English

Scopus indexed
Author
Lemeshko, MikhailISTA ; Schmidt, Richard
Book Editor
Dulieu, Oliver; Osterwalder, Andreas
Department
Series Title
Theoretical and Computational Chemistry Series
Abstract
In several settings of physics and chemistry one has to deal with molecules interacting with some kind of an external environment, be it a gas, a solution, or a crystal surface. Understanding molecular processes in the presence of such a many-particle bath is inherently challenging, and usually requires large-scale numerical computations. Here, we present an alternative approach to the problem, based on the notion of the angulon quasiparticle. We show that molecules rotating inside superfluid helium nanodroplets and Bose–Einstein condensates form angulons, and therefore can be described by straightforward solutions of a simple microscopic Hamiltonian. Casting the problem in the language of angulons allows us not only to greatly simplify it, but also to gain insights into the origins of the observed phenomena and to make predictions for future experimental studies.
Publishing Year
Date Published
2017-12-14
Book Title
Cold Chemistry: Molecular Scattering and Reactivity Near Absolute Zero
Volume
11
Page
444 - 495
ISSN
IST-REx-ID
604

Cite this

Lemeshko M, Schmidt R. Molecular impurities interacting with a many-particle environment: From ultracold gases to helium nanodroplets. In: Dulieu O, Osterwalder A, eds. Cold Chemistry: Molecular Scattering and Reactivity Near Absolute Zero . Vol 11. Theoretical and Computational Chemistry Series. The Royal Society of Chemistry; 2017:444-495. doi:10.1039/9781782626800-00444
Lemeshko, M., & Schmidt, R. (2017). Molecular impurities interacting with a many-particle environment: From ultracold gases to helium nanodroplets. In O. Dulieu & A. Osterwalder (Eds.), Cold Chemistry: Molecular Scattering and Reactivity Near Absolute Zero (Vol. 11, pp. 444–495). The Royal Society of Chemistry. https://doi.org/10.1039/9781782626800-00444
Lemeshko, Mikhail, and Richard Schmidt. “Molecular Impurities Interacting with a Many-Particle Environment: From Ultracold Gases to Helium Nanodroplets.” In Cold Chemistry: Molecular Scattering and Reactivity Near Absolute Zero , edited by Oliver Dulieu and Andreas Osterwalder, 11:444–95. Theoretical and Computational Chemistry Series. The Royal Society of Chemistry, 2017. https://doi.org/10.1039/9781782626800-00444.
M. Lemeshko and R. Schmidt, “Molecular impurities interacting with a many-particle environment: From ultracold gases to helium nanodroplets,” in Cold Chemistry: Molecular Scattering and Reactivity Near Absolute Zero , vol. 11, O. Dulieu and A. Osterwalder, Eds. The Royal Society of Chemistry, 2017, pp. 444–495.
Lemeshko M, Schmidt R. 2017.Molecular impurities interacting with a many-particle environment: From ultracold gases to helium nanodroplets. In: Cold Chemistry: Molecular Scattering and Reactivity Near Absolute Zero . Theoretical and Computational Chemistry Series, vol. 11, 444–495.
Lemeshko, Mikhail, and Richard Schmidt. “Molecular Impurities Interacting with a Many-Particle Environment: From Ultracold Gases to Helium Nanodroplets.” Cold Chemistry: Molecular Scattering and Reactivity Near Absolute Zero , edited by Oliver Dulieu and Andreas Osterwalder, vol. 11, The Royal Society of Chemistry, 2017, pp. 444–95, doi:10.1039/9781782626800-00444.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar