Evidence for Efimov quantum states in an ultracold gas of caesium atoms

T. Kraemer, M. Mark, P. Waldburger, J. Danzl, C. Chin, B. Engeser, A. Lange, K. Pilch, A. Jaakkola, H. Nägerl, R. Grimm, Nature 440 (2006) 315–318.


Journal Article | Published
Author
; ; ; ; ; ; ; ; ; ;
Abstract
Systems of three interacting particles are notorious for their complex physical behaviour. A landmark theoretical result in few-body quantum physics is Efimov\'s prediction1,2 of a universal set of bound trimer states appearing for three identical bosons with a resonant two-body interaction. Counterintuitively, these states even exist in the absence of a corresponding two-body bound state. Since the formulation of Efimov\'s problem in the context of nuclear physics 35 years ago, it has attracted great interest in many areas of physics3-8. However, the observation of Efimov quantum states has remained an elusive goal3,5. Here we report the observation of an Efimov resonance in an ultracold gas of caesium atoms. The resonance occurs in the range of large negative two-body scattering lengths, arising from the coupling of three free atoms to an Efimov trimer. Experimentally, we observe its signature as a giant three-body recombination loss9,10 when the strength of the two-body interaction is varied. We also detect a minimum 9,11,12 in the recombination loss for positive scattering lengths, indicating destructive interference of decay pathways. Our results confirm central theoretical predictions of Efimov physics and represent a starting point with which to explore the universal properties of resonantly interacting few-body systems7. While Feshbach resonances13,14 have provided the key to control quantum-mechanical interactions on the two-body level, Efimov resonances connect ultracold matter15 to the world of few-body quantum phenomena.
Publishing Year
Date Published
2006-03-16
Journal Title
Nature
Acknowledgement
We thank E. Braaten, C. Greene, B. Esry, H. Hammer and T. Ko ̈hler for many discussions and E. Kneringer for support regarding the data analysis. We acknowledge support by the Austrian Science Fund (FWF) within Spezialforschungsbereich 15 and within the Lise Meitner programme, and by the European Union in the frame of the TMR networks ‘Cold Molecules’ and ‘FASTNet’. M.M. is supported within the Doktorandenprogramm of the Austrian Academy of Sciences.
Volume
440
Issue
7082
Page
315 - 318
IST-REx-ID

Cite this

Kraemer T, Mark M, Waldburger P, et al. Evidence for Efimov quantum states in an ultracold gas of caesium atoms. Nature. 2006;440(7082):315-318. doi:10.1038/nature04626
Kraemer, T., Mark, M., Waldburger, P., Danzl, J., Chin, C., Engeser, B., … Grimm, R. (2006). Evidence for Efimov quantum states in an ultracold gas of caesium atoms. Nature, 440(7082), 315–318. https://doi.org/10.1038/nature04626
Kraemer, Tobias, Michael Mark, Philipp Waldburger, Johannes Danzl, Cheng Chin, Bastian Engeser, Adam Lange, et al. “Evidence for Efimov Quantum States in an Ultracold Gas of Caesium Atoms.” Nature 440, no. 7082 (2006): 315–18. https://doi.org/10.1038/nature04626.
T. Kraemer et al., “Evidence for Efimov quantum states in an ultracold gas of caesium atoms,” Nature, vol. 440, no. 7082, pp. 315–318, 2006.
Kraemer T, Mark M, Waldburger P, Danzl J, Chin C, Engeser B, Lange A, Pilch K, Jaakkola A, Nägerl H, Grimm R. 2006. Evidence for Efimov quantum states in an ultracold gas of caesium atoms. Nature. 440(7082), 315–318.
Kraemer, Tobias, et al. “Evidence for Efimov Quantum States in an Ultracold Gas of Caesium Atoms.” Nature, vol. 440, no. 7082, Nature Publishing Group, 2006, pp. 315–18, doi:10.1038/nature04626.

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data IST Research Explorer

Search this title in

Google Scholar