Earlier Version

Vascular cambium regeneration and vessel formation in wounded inflorescence stems of Arabidopsis

Mazur E, Benková E, Friml J. 2016. Vascular cambium regeneration and vessel formation in wounded inflorescence stems of Arabidopsis. Scientific Reports. 6, 33754.

Download
OA IST-2016-692-v1+1_srep33754.pdf 2.90 MB

Journal Article | Published | English

Scopus indexed
Author
Abstract
Synchronized tissue polarization during regeneration or de novo vascular tissue formation is a plant-specific example of intercellular communication and coordinated development. According to the canalization hypothesis, the plant hormone auxin serves as polarizing signal that mediates directional channel formation underlying the spatio-temporal vasculature patterning. A necessary part of canalization is a positive feedback between auxin signaling and polarity of the intercellular auxin flow. The cellular and molecular mechanisms of this process are still poorly understood, not the least, because of a lack of a suitable model system. We show that the main genetic model plant, Arabidopsis (Arabidopsis thaliana) can be used to study the canalization during vascular cambium regeneration and new vasculature formation. We monitored localized auxin responses, directional auxin-transport channels formation, and establishment of new vascular cambium polarity during regenerative processes after stem wounding. The increased auxin response above and around the wound preceded the formation of PIN1 auxin transporter-marked channels from the primarily homogenous tissue and the transient, gradual changes in PIN1 localization preceded the polarity of newly formed vascular tissue. Thus, Arabidopsis is a useful model for studies of coordinated tissue polarization and vasculature formation after wounding allowing for genetic and mechanistic dissection of the canalization hypothesis.
Publishing Year
Date Published
2016-09-21
Journal Title
Scientific Reports
Acknowledgement
We wish to thank Prof. Ewa U. Kurczyńska for initiation of this work and valuable advices. We thank Martine De Cock for help in preparing the manuscript. This work was supported by the European Research Council (project ERC-2011-StG-20101109-PSDP), the European Social Fund (CZ.1.07/2.3.00/20.0043), and the Czech Science Foundation GAČR (GA13-40637 S) to J.F., (GA 13-39982S) to E.B. and E.M. and in part by the European Regional Development Fund (project “CEITEC, Central European Institute of Technology”, CZ.1.05/1.1.00/02.0068).
Volume
6
Article Number
33754
IST-REx-ID

Cite this

Mazur E, Benková E, Friml J. Vascular cambium regeneration and vessel formation in wounded inflorescence stems of Arabidopsis. Scientific Reports. 2016;6. doi:10.1038/srep33754
Mazur, E., Benková, E., & Friml, J. (2016). Vascular cambium regeneration and vessel formation in wounded inflorescence stems of Arabidopsis. Scientific Reports. Nature Publishing Group. https://doi.org/10.1038/srep33754
Mazur, Ewa, Eva Benková, and Jiří Friml. “Vascular Cambium Regeneration and Vessel Formation in Wounded Inflorescence Stems of Arabidopsis.” Scientific Reports. Nature Publishing Group, 2016. https://doi.org/10.1038/srep33754.
E. Mazur, E. Benková, and J. Friml, “Vascular cambium regeneration and vessel formation in wounded inflorescence stems of Arabidopsis,” Scientific Reports, vol. 6. Nature Publishing Group, 2016.
Mazur E, Benková E, Friml J. 2016. Vascular cambium regeneration and vessel formation in wounded inflorescence stems of Arabidopsis. Scientific Reports. 6, 33754.
Mazur, Ewa, et al. “Vascular Cambium Regeneration and Vessel Formation in Wounded Inflorescence Stems of Arabidopsis.” Scientific Reports, vol. 6, 33754, Nature Publishing Group, 2016, doi:10.1038/srep33754.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2018-12-12
MD5 Checksum
ee371fbc9124ad93157a95829264e4fe


Export

Marked Publications

Open Data ISTA Research Explorer

Sources

PMID: 27649687
PubMed | Europe PMC

Search this title in

Google Scholar