Cell-autonomous gene function and non-cell-autonomous effects in radial projection neuron migration

Hansen AH. 2021. Cell-autonomous gene function and non-cell-autonomous effects in radial projection neuron migration. IST Austria.

Download
Restricted Thesis_Hansen.docx 10.63 MB
Restricted Thesis_Hansen_PDFA-1a.pdf

Thesis | Published | English
Series Title
IST Austria Thesis
Abstract
The brain is one of the largest and most complex organs and it is composed of billions of neurons that communicate together enabling e.g. consciousness. The cerebral cortex is the largest site of neural integration in the central nervous system. Concerted radial migration of newly born cortical projection neurons, from their birthplace to their final position, is a key step in the assembly of the cerebral cortex. The cellular and molecular mechanisms regulating radial neuronal migration in vivo are however still unclear. Recent evidence suggests that distinct signaling cues act cell-autonomously but differentially at certain steps during the overall migration process. Moreover, functional analysis of genetic mosaics (mutant neurons present in wild-type/heterozygote environment) using the MADM (Mosaic Analysis with Double Markers) analyses in comparison to global knockout also indicate a significant degree of non-cell-autonomous and/or community effects in the control of cortical neuron migration. The interactions of cell-intrinsic (cell-autonomous) and cell-extrinsic (non-cell-autonomous) components are largely unknown. In part of this thesis work we established a MADM-based experimental strategy for the quantitative analysis of cell-autonomous gene function versus non-cell-autonomous and/or community effects. The direct comparison of mutant neurons from the genetic mosaic (cell-autonomous) to mutant neurons in the conditional and/or global knockout (cell-autonomous + non-cell-autonomous) allows to quantitatively analyze non-cell-autonomous effects. Such analysis enable the high-resolution analysis of projection neuron migration dynamics in distinct environments with concomitant isolation of genomic and proteomic profiles. Using these experimental paradigms and in combination with computational modeling we show and characterize the nature of non-cell-autonomous effects to coordinate radial neuron migration. Furthermore, this thesis discusses recent developments in neurodevelopment with focus on neuronal polarization and non-cell-autonomous mechanisms in neuronal migration.
Publishing Year
Date Published
2021-09-02
Page
182
ISSN
IST-REx-ID

Cite this

Hansen AH. Cell-autonomous gene function and non-cell-autonomous effects in radial projection neuron migration. 2021. doi:10.15479/at:ista:9962
Hansen, A. H. (2021). Cell-autonomous gene function and non-cell-autonomous effects in radial projection neuron migration. IST Austria. https://doi.org/10.15479/at:ista:9962
Hansen, Andi H. “Cell-Autonomous Gene Function and Non-Cell-Autonomous Effects in Radial Projection Neuron Migration.” IST Austria, 2021. https://doi.org/10.15479/at:ista:9962.
A. H. Hansen, “Cell-autonomous gene function and non-cell-autonomous effects in radial projection neuron migration,” IST Austria, 2021.
Hansen AH. 2021. Cell-autonomous gene function and non-cell-autonomous effects in radial projection neuron migration. IST Austria.
Hansen, Andi H. Cell-Autonomous Gene Function and Non-Cell-Autonomous Effects in Radial Projection Neuron Migration. IST Austria, 2021, doi:10.15479/at:ista:9962.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
Thesis_Hansen.docx 10.63 MB
Access Level
Restricted Closed Access
Date Uploaded
2021-08-30
MD5 Checksum
66b56f5b988b233dc66a4f4b4fb2cdfe
File Name
Thesis_Hansen_PDFA-1a.pdf 13.46 MB
Access Level
Restricted Closed Access
Date Uploaded
2021-08-30
Embargo End Date
2022-09-02
MD5 Checksum
204fa40321a1c6289b68c473634c4bf3


Export

Marked Publications

Open Data IST Research Explorer

Search this title in

Google Scholar