Subsampling scaling

A. Levina (Martius), V. Priesemann, Nature Communications 8 (2017).

OA IST-2017-819-v1+1_2017_Levina_SubsamplingScaling.pdf 746.22 KB

Journal Article | Published | English

Scopus indexed
In real-world applications, observations are often constrained to a small fraction of a system. Such spatial subsampling can be caused by the inaccessibility or the sheer size of the system, and cannot be overcome by longer sampling. Spatial subsampling can strongly bias inferences about a system’s aggregated properties. To overcome the bias, we derive analytically a subsampling scaling framework that is applicable to different observables, including distributions of neuronal avalanches, of number of people infected during an epidemic outbreak, and of node degrees. We demonstrate how to infer the correct distributions of the underlying full system, how to apply it to distinguish critical from subcritical systems, and how to disentangle subsampling and finite size effects. Lastly, we apply subsampling scaling to neuronal avalanche models and to recordings from developing neural networks. We show that only mature, but not young networks follow power-law scaling, indicating self-organization to criticality during development.
Publishing Year
Date Published
Journal Title
Nature Communications
Article Number

Cite this

Levina (Martius) A, Priesemann V. Subsampling scaling. Nature Communications. 2017;8. doi:10.1038/ncomms15140
Levina (Martius), A., & Priesemann, V. (2017). Subsampling scaling. Nature Communications. Nature Publishing Group.
Levina (Martius), Anna, and Viola Priesemann. “Subsampling Scaling.” Nature Communications. Nature Publishing Group, 2017.
A. Levina (Martius) and V. Priesemann, “Subsampling scaling,” Nature Communications, vol. 8. Nature Publishing Group, 2017.
Levina (Martius) A, Priesemann V. 2017. Subsampling scaling. Nature Communications. 8, 15140.
Levina (Martius), Anna, and Viola Priesemann. “Subsampling Scaling.” Nature Communications, vol. 8, 15140, Nature Publishing Group, 2017, doi:10.1038/ncomms15140.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
MD5 Checksum


Marked Publications

Open Data IST Research Explorer

Search this title in

Google Scholar