Subsampling scaling

A. Levina (Martius), V. Priesemann, Nature Communications 8 (2017).

Download
OA 746.22 KB

Journal Article | Published | English
Author
Abstract
In real-world applications, observations are often constrained to a small fraction of a system. Such spatial subsampling can be caused by the inaccessibility or the sheer size of the system, and cannot be overcome by longer sampling. Spatial subsampling can strongly bias inferences about a system’s aggregated properties. To overcome the bias, we derive analytically a subsampling scaling framework that is applicable to different observables, including distributions of neuronal avalanches, of number of people infected during an epidemic outbreak, and of node degrees. We demonstrate how to infer the correct distributions of the underlying full system, how to apply it to distinguish critical from subcritical systems, and how to disentangle subsampling and finite size effects. Lastly, we apply subsampling scaling to neuronal avalanche models and to recordings from developing neural networks. We show that only mature, but not young networks follow power-law scaling, indicating self-organization to criticality during development.
Publishing Year
Date Published
2017-05-04
Journal Title
Nature Communications
Volume
8
Article Number
15140
ISSN
IST-REx-ID

Cite this

Levina (Martius) A, Priesemann V. Subsampling scaling. Nature Communications. 2017;8. doi:10.1038/ncomms15140
Levina (Martius), A., & Priesemann, V. (2017). Subsampling scaling. Nature Communications, 8. https://doi.org/10.1038/ncomms15140
Levina (Martius), Anna, and Viola Priesemann. “Subsampling Scaling.” Nature Communications 8 (2017). https://doi.org/10.1038/ncomms15140.
A. Levina (Martius) and V. Priesemann, “Subsampling scaling,” Nature Communications, vol. 8, 2017.
Levina (Martius) A, Priesemann V. 2017. Subsampling scaling. Nature Communications. 8.
Levina (Martius), Anna, and Viola Priesemann. “Subsampling Scaling.” Nature Communications, vol. 8, 15140, Nature Publishing Group, 2017, doi:10.1038/ncomms15140.
All files available under the following license(s):
Creative Commons License:
CC-BYCreative Commons Attribution 4.0 International Public License (CC-BY 4.0)
Main File(s)
Access Level
OA Open Access
Last Uploaded
2018-12-12T10:15:05Z


Export

Marked Publications

Open Data IST Research Explorer

Search this title in

Google Scholar