--- _id: '978' abstract: - lang: eng text: The newly discovered topological crystalline insulators feature a complex band structure involving multiple Dirac cones, and are potentially highly tunable by external electric field, temperature or strain. Theoretically, it has been predicted that the various Dirac cones, which are offset in energy and momentum, might harbour vastly different orbital character. However, their orbital texture, which is of immense importance in determining a variety of a materialâ €™ s properties remains elusive. Here, we unveil the orbital texture of Pb 1â ̂'x Sn x Se, a prototypical topological crystalline insulator. By using Fourier-transform scanning tunnelling spectroscopy we measure the interference patterns produced by the scattering of surface-state electrons. We discover that the intensity and energy dependences of the Fourier transforms show distinct characteristics, which can be directly attributed to orbital effects. Our experiments reveal a complex band topology involving two Lifshitz transitions and establish the orbital nature of the Dirac bands, which could provide an alternative pathway towards future quantum applications. acknowledgement: V.M. gratefully acknowledges funding from the US Department of Energy, Scanned Probe Division under Award Number DE-FG02-12ER46880 for the primary support of I.Z. and Y.O. (experiments, data analysis and writing the paper) and NSF-ECCS-1232105 for the partial support of W.Z. and D.W. (data acquisition). Work at Massachusetts Institute of Technology is supported by US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0010526 (L.F.), and NSF DMR 1104498 (M.S.). H.L. acknowledges the Singapore National Research Foundation for support under NRF Award No. NRF-NRFF2013-03. The work at Northeastern University is supported by the US Department of Energy grant number DE-FG02-07ER46352, and benefited from Northeastern University’s Advanced Scientific Computation Center (ASCC), theory support at the Advanced Light Source, Berkeley and the allocation of time at the NERSC supercomputing centre through DOE grant number DE-AC02-05CH11231. W-F.T. and C-Y.H. were supported by the NSC in Taiwan under Grant No. 102-2112-M-110-009. W-F.T. also thanks C. Fang for useful discussions. Work at Princeton University is supported by the US National Science Foundation Grant, NSF-DMR-1006492. F.C. acknowledges the support provided by MOST-Taiwan under project number NSC-102-2119-M-002-004. author: - first_name: Ilija full_name: Zeljkovic, Ilija last_name: Zeljkovic - first_name: Yoshinori full_name: Okada, Yoshinori last_name: Okada - first_name: Chengyi full_name: Huang, Chengyi last_name: Huang - first_name: Raman full_name: Sankar, Raman last_name: Sankar - first_name: Daniel full_name: Walkup, Daniel last_name: Walkup - first_name: Wenwen full_name: Zhou, Wenwen last_name: Zhou - first_name: Maksym full_name: Maksym Serbyn id: 47809E7E-F248-11E8-B48F-1D18A9856A87 last_name: Serbyn orcid: 0000-0002-2399-5827 - first_name: Fangcheng full_name: Chou, Fangcheng last_name: Chou - first_name: Wei full_name: Tsai, Wei-Feng last_name: Tsai - first_name: Hsin full_name: Lin, Hsin last_name: Lin - first_name: Arun full_name: Bansil, Arun last_name: Bansil - first_name: Liang full_name: Fu, Liang last_name: Fu - first_name: Md full_name: Hasan, Md Z last_name: Hasan - first_name: Vidya full_name: Madhavan, Vidya last_name: Madhavan citation: ama: Zeljkovic I, Okada Y, Huang C, et al. Mapping the unconventional orbital texture in topological crystalline insulators. Nature Physics. 2014;10(8):572-577. doi:10.1038/nphys3012 apa: Zeljkovic, I., Okada, Y., Huang, C., Sankar, R., Walkup, D., Zhou, W., … Madhavan, V. (2014). Mapping the unconventional orbital texture in topological crystalline insulators. Nature Physics. Nature Publishing Group. https://doi.org/10.1038/nphys3012 chicago: Zeljkovic, Ilija, Yoshinori Okada, Chengyi Huang, Raman Sankar, Daniel Walkup, Wenwen Zhou, Maksym Serbyn, et al. “Mapping the Unconventional Orbital Texture in Topological Crystalline Insulators.” Nature Physics. Nature Publishing Group, 2014. https://doi.org/10.1038/nphys3012. ieee: I. Zeljkovic et al., “Mapping the unconventional orbital texture in topological crystalline insulators,” Nature Physics, vol. 10, no. 8. Nature Publishing Group, pp. 572–577, 2014. ista: Zeljkovic I, Okada Y, Huang C, Sankar R, Walkup D, Zhou W, Serbyn M, Chou F, Tsai W, Lin H, Bansil A, Fu L, Hasan M, Madhavan V. 2014. Mapping the unconventional orbital texture in topological crystalline insulators. Nature Physics. 10(8), 572–577. mla: Zeljkovic, Ilija, et al. “Mapping the Unconventional Orbital Texture in Topological Crystalline Insulators.” Nature Physics, vol. 10, no. 8, Nature Publishing Group, 2014, pp. 572–77, doi:10.1038/nphys3012. short: I. Zeljkovic, Y. Okada, C. Huang, R. Sankar, D. Walkup, W. Zhou, M. Serbyn, F. Chou, W. Tsai, H. Lin, A. Bansil, L. Fu, M. Hasan, V. Madhavan, Nature Physics 10 (2014) 572–577. date_created: 2018-12-11T11:49:30Z date_published: 2014-08-01T00:00:00Z date_updated: 2021-01-12T08:22:23Z day: '01' doi: 10.1038/nphys3012 extern: 1 intvolume: ' 10' issue: '8' main_file_link: - open_access: '1' url: https://arxiv.org/abs/1312.0164 month: '08' oa: 1 page: 572 - 577 publication: Nature Physics publication_status: published publisher: Nature Publishing Group publist_id: '6423' quality_controlled: 0 status: public title: Mapping the unconventional orbital texture in topological crystalline insulators type: journal_article volume: 10 year: '2014' ...