Tension-dependent stabilization of E-cadherin limits cell-cell contact expansion

Slovakova J, Sikora MK, Caballero Mancebo S, Krens G, Kaufmann W, Huljev K, Heisenberg C-PJ. 2020. Tension-dependent stabilization of E-cadherin limits cell-cell contact expansion. bioRxiv, 10.1101/2020.11.20.391284.


Preprint | Published | English
Abstract
Tension of the actomyosin cell cortex plays a key role in determining cell-cell contact growth and size. The level of cortical tension outside of the cell-cell contact, when pulling at the contact edge, scales with the total size to which a cell-cell contact can grow1,2. Here we show in zebrafish primary germ layer progenitor cells that this monotonic relationship only applies to a narrow range of cortical tension increase, and that above a critical threshold, contact size inversely scales with cortical tension. This switch from cortical tension increasing to decreasing progenitor cell-cell contact size is caused by cortical tension promoting E-cadherin anchoring to the actomyosin cytoskeleton, thereby increasing clustering and stability of E-cadherin at the contact. Once tension-mediated E-cadherin stabilization at the contact exceeds a critical threshold level, the rate by which the contact expands in response to pulling forces from the cortex sharply drops, leading to smaller contacts at physiologically relevant timescales of contact formation. Thus, the activity of cortical tension in expanding cell-cell contact size is limited by tension stabilizing E-cadherin-actin complexes at the contact.
Publishing Year
Date Published
2020-11-20
Journal Title
bioRxiv
Acknowledgement
We would like to thank Edouard Hannezo for discussions, Shayan Shami Pour and Daniel Capek for help with data analysis, Vanessa Barone and other members of the Heisenberg laboratory for thoughtful discussions and comments on the manuscript. We also thank Jack Merrin for preparing the microwells, and the Scientific Service Units at IST Austria, specifically Bioimaging and Electron Microscopy, and the Zebrafish Facility for continuous support. We acknowledge Hitoshi Morita for the kind gift of VinculinB-GFP plasmid. This research was supported by an ERC Advanced Grant (MECSPEC) to C.-P.H, EMBO Long Term grant (ALTF 187-2013) to M.S and IST Fellow Marie-Curie COFUND No. P_IST_EU01 to J.S.
Page
41
IST-REx-ID

Cite this

Slovakova J, Sikora MK, Caballero Mancebo S, et al. Tension-dependent stabilization of E-cadherin limits cell-cell contact expansion. bioRxiv. 2020. doi:10.1101/2020.11.20.391284
Slovakova, J., Sikora, M. K., Caballero Mancebo, S., Krens, G., Kaufmann, W., Huljev, K., & Heisenberg, C.-P. J. (2020). Tension-dependent stabilization of E-cadherin limits cell-cell contact expansion. bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2020.11.20.391284
Slovakova, Jana, Mateusz K Sikora, Silvia Caballero Mancebo, Gabriel Krens, Walter Kaufmann, Karla Huljev, and Carl-Philipp J Heisenberg. “Tension-Dependent Stabilization of E-Cadherin Limits Cell-Cell Contact Expansion.” BioRxiv. Cold Spring Harbor Laboratory, 2020. https://doi.org/10.1101/2020.11.20.391284.
J. Slovakova et al., “Tension-dependent stabilization of E-cadherin limits cell-cell contact expansion,” bioRxiv. Cold Spring Harbor Laboratory, 2020.
Slovakova J, Sikora MK, Caballero Mancebo S, Krens G, Kaufmann W, Huljev K, Heisenberg C-PJ. 2020. Tension-dependent stabilization of E-cadherin limits cell-cell contact expansion. bioRxiv, 10.1101/2020.11.20.391284.
Slovakova, Jana, et al. “Tension-Dependent Stabilization of E-Cadherin Limits Cell-Cell Contact Expansion.” BioRxiv, Cold Spring Harbor Laboratory, 2020, doi:10.1101/2020.11.20.391284.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data IST Research Explorer

Search this title in

Google Scholar