i-PI 2.0: A universal force engine for advanced molecular simulations

Kapil V, Rossi M, Marsalek O, Petraglia R, Litman Y, Spura T, Cheng B, Cuzzocrea A, Meißner RH, Wilkins DM, Helfrecht BA, Juda P, Bienvenue SP, Fang W, Kessler J, Poltavsky I, Vandenbrande S, Wieme J, Corminboeuf C, Kühne TD, Manolopoulos DE, Markland TE, Richardson JO, Tkatchenko A, Tribello GA, Van Speybroeck V, Ceriotti M. 2019. i-PI 2.0: A universal force engine for advanced molecular simulations. Computer Physics Communications. 236, 214–223.


Journal Article | Published | English

Scopus indexed
Author
Kapil, Venkat; Rossi, Mariana; Marsalek, Ondrej; Petraglia, Riccardo; Litman, Yair; Spura, Thomas; Cheng, BingqingIST Austria ; Cuzzocrea, Alice; Meißner, Robert H.; Wilkins, David M.; Helfrecht, Benjamin A.; Juda, Przemysław
All
Abstract
Progress in the atomic-scale modeling of matter over the past decade has been tremendous. This progress has been brought about by improvements in methods for evaluating interatomic forces that work by either solving the electronic structure problem explicitly, or by computing accurate approximations of the solution and by the development of techniques that use the Born–Oppenheimer (BO) forces to move the atoms on the BO potential energy surface. As a consequence of these developments it is now possible to identify stable or metastable states, to sample configurations consistent with the appropriate thermodynamic ensemble, and to estimate the kinetics of reactions and phase transitions. All too often, however, progress is slowed down by the bottleneck associated with implementing new optimization algorithms and/or sampling techniques into the many existing electronic-structure and empirical-potential codes. To address this problem, we are thus releasing a new version of the i-PI software. This piece of software is an easily extensible framework for implementing advanced atomistic simulation techniques using interatomic potentials and forces calculated by an external driver code. While the original version of the code (Ceriotti et al., 2014) was developed with a focus on path integral molecular dynamics techniques, this second release of i-PI not only includes several new advanced path integral methods, but also offers other classes of algorithms. In other words, i-PI is moving towards becoming a universal force engine that is both modular and tightly coupled to the driver codes that evaluate the potential energy surface and its derivatives.
Publishing Year
Date Published
2019-03-01
Journal Title
Computer Physics Communications
Volume
236
Page
214-223
ISSN
IST-REx-ID

Cite this

Kapil V, Rossi M, Marsalek O, et al. i-PI 2.0: A universal force engine for advanced molecular simulations. Computer Physics Communications. 2019;236:214-223. doi:10.1016/j.cpc.2018.09.020
Kapil, V., Rossi, M., Marsalek, O., Petraglia, R., Litman, Y., Spura, T., … Ceriotti, M. (2019). i-PI 2.0: A universal force engine for advanced molecular simulations. Computer Physics Communications. Elsevier. https://doi.org/10.1016/j.cpc.2018.09.020
Kapil, Venkat, Mariana Rossi, Ondrej Marsalek, Riccardo Petraglia, Yair Litman, Thomas Spura, Bingqing Cheng, et al. “I-PI 2.0: A Universal Force Engine for Advanced Molecular Simulations.” Computer Physics Communications. Elsevier, 2019. https://doi.org/10.1016/j.cpc.2018.09.020.
V. Kapil et al., “i-PI 2.0: A universal force engine for advanced molecular simulations,” Computer Physics Communications, vol. 236. Elsevier, pp. 214–223, 2019.
Kapil V, Rossi M, Marsalek O, Petraglia R, Litman Y, Spura T, Cheng B, Cuzzocrea A, Meißner RH, Wilkins DM, Helfrecht BA, Juda P, Bienvenue SP, Fang W, Kessler J, Poltavsky I, Vandenbrande S, Wieme J, Corminboeuf C, Kühne TD, Manolopoulos DE, Markland TE, Richardson JO, Tkatchenko A, Tribello GA, Van Speybroeck V, Ceriotti M. 2019. i-PI 2.0: A universal force engine for advanced molecular simulations. Computer Physics Communications. 236, 214–223.
Kapil, Venkat, et al. “I-PI 2.0: A Universal Force Engine for Advanced Molecular Simulations.” Computer Physics Communications, vol. 236, Elsevier, 2019, pp. 214–23, doi:10.1016/j.cpc.2018.09.020.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data IST Research Explorer

Sources

arXiv 1808.03824

Search this title in

Google Scholar