@article{9580,
abstract = {An r-cut of a k-uniform hypergraph H is a partition of the vertex set of H into r parts and the size of the cut is the number of edges which have a vertex in each part. A classical result of Edwards says that every m-edge graph has a 2-cut of size m/2+Ω)(m−−√) and this is best possible. That is, there exist cuts which exceed the expected size of a random cut by some multiple of the standard deviation. We study analogues of this and related results in hypergraphs. First, we observe that similarly to graphs, every m-edge k-uniform hypergraph has an r-cut whose size is Ω(m−−√) larger than the expected size of a random r-cut. Moreover, in the case where k = 3 and r = 2 this bound is best possible and is attained by Steiner triple systems. Surprisingly, for all other cases (that is, if k ≥ 4 or r ≥ 3), we show that every m-edge k-uniform hypergraph has an r-cut whose size is Ω(m5/9) larger than the expected size of a random r-cut. This is a significant difference in behaviour, since the amount by which the size of the largest cut exceeds the expected size of a random cut is now considerably larger than the standard deviation.},
author = {Conlon, David and Fox, Jacob and Kwan, Matthew Alan and Sudakov, Benny},
issn = {1565-8511},
journal = {Israel Journal of Mathematics},
number = {1},
pages = {67--111},
publisher = {Springer},
title = {{Hypergraph cuts above the average}},
doi = {10.1007/s11856-019-1897-z},
volume = {233},
year = {2019},
}