Rigidity percolation uncovers a structural basis for embryonic tissue phase transitions

Petridou N, Corominas-Murtra B, Heisenberg C-PJ, Hannezo EB. 2021. Rigidity percolation uncovers a structural basis for embryonic tissue phase transitions. Cell. 184(7), 1914–1928.e19.

Download
No fulltext has been uploaded. References only!

Journal Article | Published | English

Scopus indexed
Abstract
Embryo morphogenesis is impacted by dynamic changes in tissue material properties, which have been proposed to occur via processes akin to phase transitions (PTs). Here, we show that rigidity percolation provides a simple and robust theoretical framework to predict material/structural PTs of embryonic tissues from local cell connectivity. By using percolation theory, combined with directly monitoring dynamic changes in tissue rheology and cell contact mechanics, we demonstrate that the zebrafish blastoderm undergoes a genuine rigidity PT, brought about by a small reduction in adhesion-dependent cell connectivity below a critical value. We quantitatively predict and experimentally verify hallmarks of PTs, including power-law exponents and associated discontinuities of macroscopic observables. Finally, we show that this uniform PT depends on blastoderm cells undergoing meta-synchronous divisions causing random and, consequently, uniform changes in cell connectivity. Collectively, our theoretical and experimental findings reveal the structural basis of material PTs in an organismal context.
Publishing Year
Date Published
2021-04-01
Journal Title
Cell
Volume
184
Issue
7
Page
1914-1928.e19
ISSN
eISSN
IST-REx-ID

Cite this

Petridou N, Corominas-Murtra B, Heisenberg C-PJ, Hannezo EB. Rigidity percolation uncovers a structural basis for embryonic tissue phase transitions. Cell. 2021;184(7):1914-1928.e19. doi:10.1016/j.cell.2021.02.017
Petridou, N., Corominas-Murtra, B., Heisenberg, C.-P. J., & Hannezo, E. B. (2021). Rigidity percolation uncovers a structural basis for embryonic tissue phase transitions. Cell. Elsevier. https://doi.org/10.1016/j.cell.2021.02.017
Petridou, Nicoletta, Bernat Corominas-Murtra, Carl-Philipp J Heisenberg, and Edouard B Hannezo. “Rigidity Percolation Uncovers a Structural Basis for Embryonic Tissue Phase Transitions.” Cell. Elsevier, 2021. https://doi.org/10.1016/j.cell.2021.02.017.
N. Petridou, B. Corominas-Murtra, C.-P. J. Heisenberg, and E. B. Hannezo, “Rigidity percolation uncovers a structural basis for embryonic tissue phase transitions,” Cell, vol. 184, no. 7. Elsevier, p. 1914–1928.e19, 2021.
Petridou N, Corominas-Murtra B, Heisenberg C-PJ, Hannezo EB. 2021. Rigidity percolation uncovers a structural basis for embryonic tissue phase transitions. Cell. 184(7), 1914–1928.e19.
Petridou, Nicoletta, et al. “Rigidity Percolation Uncovers a Structural Basis for Embryonic Tissue Phase Transitions.” Cell, vol. 184, no. 7, Elsevier, 2021, p. 1914–1928.e19, doi:10.1016/j.cell.2021.02.017.

Export

Marked Publications

Open Data IST Research Explorer

Sources

PMID: 33730596
PubMed | Europe PMC

Search this title in

Google Scholar