Influence of copper telluride nanodomains on the transport properties of n-type bismuth telluride

Zhang Y, Xing C, Liu Y, Li M, Xiao K, Guardia P, LEE S, Han X, Ostovari Moghaddam A, Josep Roa J, Arbiol J, Ibáñez M, Pan K, Prato M, Xie Y, Cabot A. 2021. Influence of copper telluride nanodomains on the transport properties of n-type bismuth telluride. Chemical Engineering Journal. 418(8), 129374.

Download
No fulltext has been uploaded. References only!

Journal Article | Published | English

Scopus indexed
Author
Zhang, Yu; Xing, Congcong; Liu, YuIST Austria ; Li, Mengyao; Xiao, Ke; Guardia, Pablo; LEE, SeunghoIST Austria ; Han, Xu; Ostovari Moghaddam, Ahmad; Josep Roa, Joan; Arbiol, Jordi; Ibáñez , MariaIST Austria
All
Department
Abstract
The high processing cost, poor mechanical properties and moderate performance of Bi2Te3–based alloys used in thermoelectric devices limit the cost-effectiveness of this energy conversion technology. Towards solving these current challenges, in the present work, we detail a low temperature solution-based approach to produce Bi2Te3-Cu2-xTe nanocomposites with improved thermoelectric performance. Our approach consists in combining proper ratios of colloidal nanoparticles and to consolidate the resulting mixture into nanocomposites using a hot press. The transport properties of the nanocomposites are characterized and compared with those of pure Bi2Te3 nanomaterials obtained following the same procedure. In contrast with most previous works, the presence of Cu2-xTe nanodomains does not result in a significant reduction of the lattice thermal conductivity of the reference Bi2Te3 nanomaterial, which is already very low. However, the introduction of Cu2-xTe yields a nearly threefold increase of the power factor associated to a simultaneous increase of the Seebeck coefficient and electrical conductivity at temperatures above 400 K. Taking into account the band alignment of the two materials, we rationalize this increase by considering that Cu2-xTe nanostructures, with a relatively low electron affinity, are able to inject electrons into Bi2Te3, enhancing in this way its electrical conductivity. The simultaneous increase of the Seebeck coefficient is related to the energy filtering of charge carriers at energy barriers within Bi2Te3 domains associated with the accumulation of electrons in regions nearby a Cu2-xTe/Bi2Te3 heterojunction. Overall, with the incorporation of a proper amount of Cu2-xTe nanoparticles, we demonstrate a 250% improvement of the thermoelectric figure of merit of Bi2Te3.
Publishing Year
Date Published
2021-08-15
Journal Title
Chemical Engineering Journal
Volume
418
Issue
8
Article Number
129374
ISSN
IST-REx-ID

Cite this

Zhang Y, Xing C, Liu Y, et al. Influence of copper telluride nanodomains on the transport properties of n-type bismuth telluride. Chemical Engineering Journal. 2021;418(8). doi:10.1016/j.cej.2021.129374
Zhang, Y., Xing, C., Liu, Y., Li, M., Xiao, K., Guardia, P., … Cabot, A. (2021). Influence of copper telluride nanodomains on the transport properties of n-type bismuth telluride. Chemical Engineering Journal. Elsevier. https://doi.org/10.1016/j.cej.2021.129374
Zhang, Yu, Congcong Xing, Yu Liu, Mengyao Li, Ke Xiao, Pablo Guardia, Seungho LEE, et al. “Influence of Copper Telluride Nanodomains on the Transport Properties of N-Type Bismuth Telluride.” Chemical Engineering Journal. Elsevier, 2021. https://doi.org/10.1016/j.cej.2021.129374.
Y. Zhang et al., “Influence of copper telluride nanodomains on the transport properties of n-type bismuth telluride,” Chemical Engineering Journal, vol. 418, no. 8. Elsevier, 2021.
Zhang Y, Xing C, Liu Y, Li M, Xiao K, Guardia P, LEE S, Han X, Ostovari Moghaddam A, Josep Roa J, Arbiol J, Ibáñez M, Pan K, Prato M, Xie Y, Cabot A. 2021. Influence of copper telluride nanodomains on the transport properties of n-type bismuth telluride. Chemical Engineering Journal. 418(8), 129374.
Zhang, Yu, et al. “Influence of Copper Telluride Nanodomains on the Transport Properties of N-Type Bismuth Telluride.” Chemical Engineering Journal, vol. 418, no. 8, 129374, Elsevier, 2021, doi:10.1016/j.cej.2021.129374.

Export

Marked Publications

Open Data IST Research Explorer

Search this title in

Google Scholar