--- _id: '9202' abstract: - lang: eng text: We propose a novel hybridization method for stability analysis that over-approximates nonlinear dynamical systems by switched systems with linear inclusion dynamics. We observe that existing hybridization techniques for safety analysis that over-approximate nonlinear dynamical systems by switched affine inclusion dynamics and provide fixed approximation error, do not suffice for stability analysis. Hence, we propose a hybridization method that provides a state-dependent error which converges to zero as the state tends to the equilibrium point. The crux of our hybridization computation is an elegant recursive algorithm that uses partial derivatives of a given function to obtain upper and lower bound matrices for the over-approximating linear inclusion. We illustrate our method on some examples to demonstrate the application of the theory for stability analysis. In particular, our method is able to establish stability of a nonlinear system which does not admit a polynomial Lyapunov function. acknowledgement: Miriam Garc´ıa Soto was partially supported by the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award). Pavithra Prabhakar was partially supported by NSF CAREER Award No. 1552668, NSF Award No. 2008957 and ONR YIP Award No. N000141712577. article_processing_charge: No author: - first_name: Miriam full_name: Garcia Soto, Miriam id: 4B3207F6-F248-11E8-B48F-1D18A9856A87 last_name: Garcia Soto orcid: 0000-0003-2936-5719 - first_name: Pavithra full_name: Prabhakar, Pavithra last_name: Prabhakar citation: ama: 'Garcia Soto M, Prabhakar P. Hybridization for stability verification of nonlinear switched systems. In: 2020 IEEE Real-Time Systems Symposium. IEEE; 2020:244-256. doi:10.1109/RTSS49844.2020.00031' apa: 'Garcia Soto, M., & Prabhakar, P. (2020). Hybridization for stability verification of nonlinear switched systems. In 2020 IEEE Real-Time Systems Symposium (pp. 244–256). Houston, TX, USA : IEEE. https://doi.org/10.1109/RTSS49844.2020.00031' chicago: Garcia Soto, Miriam, and Pavithra Prabhakar. “Hybridization for Stability Verification of Nonlinear Switched Systems.” In 2020 IEEE Real-Time Systems Symposium, 244–56. IEEE, 2020. https://doi.org/10.1109/RTSS49844.2020.00031. ieee: M. Garcia Soto and P. Prabhakar, “Hybridization for stability verification of nonlinear switched systems,” in 2020 IEEE Real-Time Systems Symposium, Houston, TX, USA , 2020, pp. 244–256. ista: 'Garcia Soto M, Prabhakar P. 2020. Hybridization for stability verification of nonlinear switched systems. 2020 IEEE Real-Time Systems Symposium. RTTS: Real-Time Systems Symposium, 244–256.' mla: Garcia Soto, Miriam, and Pavithra Prabhakar. “Hybridization for Stability Verification of Nonlinear Switched Systems.” 2020 IEEE Real-Time Systems Symposium, IEEE, 2020, pp. 244–56, doi:10.1109/RTSS49844.2020.00031. short: M. Garcia Soto, P. Prabhakar, in:, 2020 IEEE Real-Time Systems Symposium, IEEE, 2020, pp. 244–256. conference: end_date: 2020-12-04 location: 'Houston, TX, USA ' name: 'RTTS: Real-Time Systems Symposium' start_date: 2020-12-01 date_created: 2021-02-26T16:38:24Z date_published: 2020-12-01T00:00:00Z date_updated: 2024-02-22T13:25:19Z day: '01' ddc: - '000' department: - _id: ToHe doi: 10.1109/RTSS49844.2020.00031 external_id: isi: - '000680435100021' file: - access_level: open_access checksum: 8f97f229316c3b3a6f0cf99297aa0941 content_type: application/pdf creator: mgarcias date_created: 2021-02-26T16:38:14Z date_updated: 2021-02-26T16:38:14Z file_id: '9203' file_name: main.pdf file_size: 1125794 relation: main_file file_date_updated: 2021-02-26T16:38:14Z has_accepted_license: '1' isi: 1 language: - iso: eng month: '12' oa: 1 oa_version: Submitted Version page: 244-256 project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: 2020 IEEE Real-Time Systems Symposium publication_identifier: eisbn: - '9781728183244' eissn: - 2576-3172 publication_status: published publisher: IEEE quality_controlled: '1' status: public title: Hybridization for stability verification of nonlinear switched systems type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 year: '2020' ...