---
res:
bibo_abstract:
- "We study properties of the volume of projections of the n-dimensional\r\ncross-polytope
$\\crosp^n = \\{ x \\in \\R^n \\mid |x_1| + \\dots + |x_n| \\leqslant 1\\}.$ We
prove that the projection of $\\crosp^n$ onto a k-dimensional coordinate subspace
has the maximum possible volume for k=2 and for k=3.\r\nWe obtain the exact lower
bound on the volume of such a projection onto a two-dimensional plane. Also, we
show that there exist local maxima which are not global ones for the volume of
a projection of $\\crosp^n$ onto a k-dimensional subspace for any n>k⩾2.@eng"
bibo_authorlist:
- foaf_Person:
foaf_givenName: Grigory
foaf_name: Ivanov, Grigory
foaf_surname: Ivanov
foaf_workInfoHomepage: http://www.librecat.org/personId=87744F66-5C6F-11EA-AFE0-D16B3DDC885E
bibo_doi: 10.1016/j.disc.2021.112312
bibo_issue: '5'
bibo_volume: 344
dct_date: 2021^xs_gYear
dct_isPartOf:
- http://id.crossref.org/issn/0012365X
dct_language: eng
dct_publisher: Elsevier@
dct_title: On the volume of projections of the cross-polytope@
...