{"date_created":"2018-12-11T11:49:08Z","issue":"5","date_published":"2015-05-11T00:00:00Z","_id":"906","extern":1,"abstract":[{"text":"The origin and evolution of novel biochemical functions remains one of the key questions in molecular evolution. We study recently emerged methacrylate reductase function that is thought to have emerged in the last century and reported in Geobacter sulfurreducens strain AM-1. We report the sequence and study the evolution of the operon coding for the flavin-containing methacrylate reductase (Mrd) and tetraheme cytochrome (Mcc) in the genome of G. sulfurreducens AM-1. Different types of signal peptides in functionally interlinked proteins Mrd and Mcc suggest a possible complex mechanism of biogenesis for chromoproteids of the methacrylate redox system. The homologs of the Mrd and Mcc sequence found in δ-Proteobacteria and Deferribacteres are also organized into an operon and their phylogenetic distribution suggested that these two genes tend to be horizontally transferred together. Specifically, the mrd and mcc genes from G. sulfurreducens AM-1 are not monophyletic with any of the homologs found in other Geobacter genomes. The acquisition of methacrylate reductase function by G. sulfurreducens AM-1 appears linked to a horizontal gene transfer event. However, the new function of the products of mrd and mcc may have evolved either prior or subsequent to their acquisition by G. sulfurreducens AM-1.","lang":"eng"}],"quality_controlled":0,"date_updated":"2021-01-12T08:21:48Z","author":[{"last_name":"Arkhipova","full_name":"Arkhipova, Oksana V","first_name":"Oksana"},{"last_name":"Meer","full_name":"Meer, Margarita V","first_name":"Margarita"},{"last_name":"Mikoulinskaia","first_name":"Galina","full_name":"Mikoulinskaia, Galina V"},{"full_name":"Zakharova, Marina V","first_name":"Marina","last_name":"Zakharova"},{"first_name":"Alexander","full_name":"Galushko, Alexander S","last_name":"Galushko"},{"first_name":"Vasilii","full_name":"Akimenko, Vasilii K","last_name":"Akimenko"},{"first_name":"Fyodor","full_name":"Fyodor Kondrashov","orcid":"0000-0001-8243-4694","last_name":"Kondrashov","id":"44FDEF62-F248-11E8-B48F-1D18A9856A87"}],"publication_status":"published","day":"11","publisher":"Public Library of Science","intvolume":" 10","title":"Recent origin of the methacrylate redox system in Geobacter sulfurreducens AM-1 through horizontal gene transfer","doi":"10.1371/journal.pone.0125888","month":"05","publist_id":"6742","type":"journal_article","status":"public","citation":{"ista":"Arkhipova O, Meer M, Mikoulinskaia G, Zakharova M, Galushko A, Akimenko V, Kondrashov F. 2015. Recent origin of the methacrylate redox system in Geobacter sulfurreducens AM-1 through horizontal gene transfer. PLoS One. 10(5).","ama":"Arkhipova O, Meer M, Mikoulinskaia G, et al. Recent origin of the methacrylate redox system in Geobacter sulfurreducens AM-1 through horizontal gene transfer. PLoS One. 2015;10(5). doi:10.1371/journal.pone.0125888","mla":"Arkhipova, Oksana, et al. “Recent Origin of the Methacrylate Redox System in Geobacter Sulfurreducens AM-1 through Horizontal Gene Transfer.” PLoS One, vol. 10, no. 5, Public Library of Science, 2015, doi:10.1371/journal.pone.0125888.","ieee":"O. Arkhipova et al., “Recent origin of the methacrylate redox system in Geobacter sulfurreducens AM-1 through horizontal gene transfer,” PLoS One, vol. 10, no. 5. Public Library of Science, 2015.","chicago":"Arkhipova, Oksana, Margarita Meer, Galina Mikoulinskaia, Marina Zakharova, Alexander Galushko, Vasilii Akimenko, and Fyodor Kondrashov. “Recent Origin of the Methacrylate Redox System in Geobacter Sulfurreducens AM-1 through Horizontal Gene Transfer.” PLoS One. Public Library of Science, 2015. https://doi.org/10.1371/journal.pone.0125888.","short":"O. Arkhipova, M. Meer, G. Mikoulinskaia, M. Zakharova, A. Galushko, V. Akimenko, F. Kondrashov, PLoS One 10 (2015).","apa":"Arkhipova, O., Meer, M., Mikoulinskaia, G., Zakharova, M., Galushko, A., Akimenko, V., & Kondrashov, F. (2015). Recent origin of the methacrylate redox system in Geobacter sulfurreducens AM-1 through horizontal gene transfer. PLoS One. Public Library of Science. https://doi.org/10.1371/journal.pone.0125888"},"tmp":{"short":"CC BY (4.0)","legal_code_url":"https://creativecommons.org/licenses/by/4.0/legalcode","image":"/images/cc_by.png","name":"Creative Commons Attribution 4.0 International Public License (CC-BY 4.0)"},"publication":"PLoS One","year":"2015","acknowledgement":"Funding: The work has been supported by a grant of the HHMI International Early Career Scientist Program (55007424), the Spanish Ministry of Economy and Competitiveness (EUI-EURYIP-2011-4320) as part of the EMBO YIP program, two grants from the Spanish Ministry of Economy and Competitiveness, \"Centro de Excelencia Severo Ochoa 2013–2017 (Sev-2012-0208)\" and (BFU2012-31329), the European Union and the European Research Council under grant agreement 335980_EinME. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Our author Dr., Prof. Akimenko Vasilii K. (1942–2013) passed away during work on the article. Prof. Akimenko was a leading biochemist in IBPM RAS and active researcher until last days. A number of his work remains unfinished. We mourn premature care of Prof. Akimenko Vasilii. We thank Heinz Himmelbauer and the CRG Genomic Unit for the sequencing.","volume":10}