Optimal strategies for selecting coordinators

Zeiner M, Schmid U, Chatterjee K. 2021. Optimal strategies for selecting coordinators. Discrete Applied Mathematics. 289(1), 392–415.

Download
OA 2021_DiscreteApplMath_Zeiner.pdf 652.74 KB

Journal Article | Published | English

Scopus indexed
Author
Zeiner, Martin; Schmid, Ulrich; Chatterjee, KrishnenduIST Austria
Department
Abstract
We study optimal election sequences for repeatedly selecting a (very) small group of leaders among a set of participants (players) with publicly known unique ids. In every time slot, every player has to select exactly one player that it considers to be the current leader, oblivious to the selection of the other players, but with the overarching goal of maximizing a given parameterized global (“social”) payoff function in the limit. We consider a quite generic model, where the local payoff achieved by a given player depends, weighted by some arbitrary but fixed real parameter, on the number of different leaders chosen in a round, the number of players that choose the given player as the leader, and whether the chosen leader has changed w.r.t. the previous round or not. The social payoff can be the maximum, average or minimum local payoff of the players. Possible applications include quite diverse examples such as rotating coordinator-based distributed algorithms and long-haul formation flying of social birds. Depending on the weights and the particular social payoff, optimal sequences can be very different, from simple round-robin where all players chose the same leader alternatingly every time slot to very exotic patterns, where a small group of leaders (at most 2) is elected in every time slot. Moreover, we study the question if and when a single player would not benefit w.r.t. its local payoff when deviating from the given optimal sequence, i.e., when our optimal sequences are Nash equilibria in the restricted strategy space of oblivious strategies. As this is the case for many parameterizations of our model, our results reveal that no punishment is needed to make it rational for the players to optimize the social payoff.
Publishing Year
Date Published
2021-01-31
Journal Title
Discrete Applied Mathematics
Acknowledgement
We are grateful to Matthias Függer and Thomas Nowak for having raised our interest in the problem studied in this paper. This work has been supported the Austrian Science Fund (FWF) projects S11405, S11407 (RiSE), and P28182 (ADynNet).
Volume
289
Issue
1
Page
392-415
ISSN
IST-REx-ID

Cite this

Zeiner M, Schmid U, Chatterjee K. Optimal strategies for selecting coordinators. Discrete Applied Mathematics. 2021;289(1):392-415. doi:10.1016/j.dam.2020.10.022
Zeiner, M., Schmid, U., & Chatterjee, K. (2021). Optimal strategies for selecting coordinators. Discrete Applied Mathematics. Elsevier. https://doi.org/10.1016/j.dam.2020.10.022
Zeiner, Martin, Ulrich Schmid, and Krishnendu Chatterjee. “Optimal Strategies for Selecting Coordinators.” Discrete Applied Mathematics. Elsevier, 2021. https://doi.org/10.1016/j.dam.2020.10.022.
M. Zeiner, U. Schmid, and K. Chatterjee, “Optimal strategies for selecting coordinators,” Discrete Applied Mathematics, vol. 289, no. 1. Elsevier, pp. 392–415, 2021.
Zeiner M, Schmid U, Chatterjee K. 2021. Optimal strategies for selecting coordinators. Discrete Applied Mathematics. 289(1), 392–415.
Zeiner, Martin, et al. “Optimal Strategies for Selecting Coordinators.” Discrete Applied Mathematics, vol. 289, no. 1, Elsevier, 2021, pp. 392–415, doi:10.1016/j.dam.2020.10.022.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2021-02-04
MD5 Checksum
f1039ff5a2d6ca116720efdb84ee9d5e


Export

Marked Publications

Open Data IST Research Explorer

Search this title in

Google Scholar