Efficient reachability analysis of parametric linear hybrid systems with time-triggered transitions

Forets M, Freire D, Schilling C. 2020. Efficient reachability analysis of parametric linear hybrid systems with  time-triggered transitions. 18th ACM-IEEE International Conference on Formal Methods and Models for System Design. MEMOCODE: Conference on Formal Methods and Models for System Design, 9314994.


Conference Paper | Published | English

Scopus indexed
Author
Forets, Marcelo; Freire, Daniel; Schilling, ChristianIST Austria
Department
Abstract
Efficiently handling time-triggered and possibly nondeterministic switches for hybrid systems reachability is a challenging task. In this paper we present an approach based on conservative set-based enclosure of the dynamics that can handle systems with uncertain parameters and inputs, where the uncertainties are bound to given intervals. The method is evaluated on the plant model of an experimental electro-mechanical braking system with periodic controller. In this model, the fast-switching controller dynamics requires simulation time scales of the order of nanoseconds. Accurate set-based computations for relatively large time horizons are known to be expensive. However, by appropriately decoupling the time variable with respect to the spatial variables, and enclosing the uncertain parameters using interval matrix maps acting on zonotopes, we show that the computation time can be lowered to 5000 times faster with respect to previous works. This is a step forward in formal verification of hybrid systems because reduced run-times allow engineers to introduce more expressiveness in their models with a relatively inexpensive computational cost.
Publishing Year
Date Published
2020-12-04
Proceedings Title
18th ACM-IEEE International Conference on Formal Methods and Models for System Design
Article Number
9314994
Conference
MEMOCODE: Conference on Formal Methods and Models for System Design
Conference Location
Virtual Conference
Conference Date
2020-12-02 – 2020-12-04
IST-REx-ID

Cite this

Forets M, Freire D, Schilling C. Efficient reachability analysis of parametric linear hybrid systems with  time-triggered transitions. In: 18th ACM-IEEE International Conference on Formal Methods and Models for System Design. IEEE; 2020. doi:10.1109/MEMOCODE51338.2020.9314994
Forets, M., Freire, D., & Schilling, C. (2020). Efficient reachability analysis of parametric linear hybrid systems with  time-triggered transitions. In 18th ACM-IEEE International Conference on Formal Methods and Models for System Design. Virtual Conference: IEEE. https://doi.org/10.1109/MEMOCODE51338.2020.9314994
Forets, Marcelo, Daniel Freire, and Christian Schilling. “Efficient Reachability Analysis of Parametric Linear Hybrid Systems with  Time-Triggered Transitions.” In 18th ACM-IEEE International Conference on Formal Methods and Models for System Design. IEEE, 2020. https://doi.org/10.1109/MEMOCODE51338.2020.9314994.
M. Forets, D. Freire, and C. Schilling, “Efficient reachability analysis of parametric linear hybrid systems with  time-triggered transitions,” in 18th ACM-IEEE International Conference on Formal Methods and Models for System Design, Virtual Conference, 2020.
Forets M, Freire D, Schilling C. 2020. Efficient reachability analysis of parametric linear hybrid systems with  time-triggered transitions. 18th ACM-IEEE International Conference on Formal Methods and Models for System Design. MEMOCODE: Conference on Formal Methods and Models for System Design, 9314994.
Forets, Marcelo, et al. “Efficient Reachability Analysis of Parametric Linear Hybrid Systems with  Time-Triggered Transitions.” 18th ACM-IEEE International Conference on Formal Methods and Models for System Design, 9314994, IEEE, 2020, doi:10.1109/MEMOCODE51338.2020.9314994.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data IST Research Explorer

Sources

arXiv 2006.12325

Search this title in

Google Scholar
ISBN Search