@article{8465, abstract = {We demonstrate that conformational exchange processes in proteins on microsecond-to-millisecond time scales can be detected and quantified by solid-state NMR spectroscopy. We show two independent approaches that measure the effect of conformational exchange on transverse relaxation parameters, namely Carr–Purcell–Meiboom–Gill relaxation-dispersion experiments and measurement of differential multiple-quantum coherence decay. Long coherence lifetimes, as required for these experiments, are achieved by the use of highly deuterated samples and fast magic-angle spinning. The usefulness of the approaches is demonstrated by application to microcrystalline ubiquitin. We detect a conformational exchange process in a region of the protein for which dynamics have also been observed in solution. Interestingly, quantitative analysis of the data reveals that the exchange process is more than 1 order of magnitude slower than in solution, and this points to the impact of the crystalline environment on free energy barriers.}, author = {Tollinger, Martin and Sivertsen, Astrid C. and Meier, Beat H. and Ernst, Matthias and Schanda, Paul}, issn = {0002-7863}, journal = {Journal of the American Chemical Society}, number = {36}, pages = {14800--14807}, publisher = {American Chemical Society}, title = {{Site-resolved measurement of microsecond-to-millisecond conformational-exchange processes in proteins by solid-state NMR spectroscopy}}, doi = {10.1021/ja303591y}, volume = {134}, year = {2012}, }