Key role of quinone in the mechanism of respiratory complex I

Gutierrez-Fernandez J, Kaszuba K, Minhas GS, Baradaran R, Tambalo M, Gallagher DT, Sazanov LA. 2020. Key role of quinone in the mechanism of respiratory complex I. Nature Communications. 11(1), 4135.

Download
OA 2020_NatComm_Gutierrez-Fernandez.pdf 7.53 MB

Journal Article | Published | English

Scopus indexed
Author
Gutierrez-Fernandez, JavierISTA; Kaszuba, KarolISTA; Minhas, Gurdeep S.; Baradaran, Rozbeh; Tambalo, MargheritaISTA; Gallagher, David T.; Sazanov, Leonid AISTA
Department
Abstract
Complex I is the first and the largest enzyme of respiratory chains in bacteria and mitochondria. The mechanism which couples spatially separated transfer of electrons to proton translocation in complex I is not known. Here we report five crystal structures of T. thermophilus enzyme in complex with NADH or quinone-like compounds. We also determined cryo-EM structures of major and minor native states of the complex, differing in the position of the peripheral arm. Crystal structures show that binding of quinone-like compounds (but not of NADH) leads to a related global conformational change, accompanied by local re-arrangements propagating from the quinone site to the nearest proton channel. Normal mode and molecular dynamics analyses indicate that these are likely to represent the first steps in the proton translocation mechanism. Our results suggest that quinone binding and chemistry play a key role in the coupling mechanism of complex I.
Publishing Year
Date Published
2020-08-18
Journal Title
Nature Communications
Acknowledgement
This work was funded by the Medical Research Council, UK and IST Austria. We thank the European Synchrotron Radiation Facility and the Diamond Light Source for provision of synchrotron radiation facilities. We are grateful to the staff of beamlines ID29, ID23-2 (ESRF, Grenoble, France) and I03 (Diamond Light Source, Didcot, UK) for assistance. Data processing was performed at the IST high-performance computing cluster.
Volume
11
Issue
1
Article Number
4135
eISSN
IST-REx-ID

Cite this

Gutierrez-Fernandez J, Kaszuba K, Minhas GS, et al. Key role of quinone in the mechanism of respiratory complex I. Nature Communications. 2020;11(1). doi:10.1038/s41467-020-17957-0
Gutierrez-Fernandez, J., Kaszuba, K., Minhas, G. S., Baradaran, R., Tambalo, M., Gallagher, D. T., & Sazanov, L. A. (2020). Key role of quinone in the mechanism of respiratory complex I. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-020-17957-0
Gutierrez-Fernandez, Javier, Karol Kaszuba, Gurdeep S. Minhas, Rozbeh Baradaran, Margherita Tambalo, David T. Gallagher, and Leonid A Sazanov. “Key Role of Quinone in the Mechanism of Respiratory Complex I.” Nature Communications. Springer Nature, 2020. https://doi.org/10.1038/s41467-020-17957-0.
J. Gutierrez-Fernandez et al., “Key role of quinone in the mechanism of respiratory complex I,” Nature Communications, vol. 11, no. 1. Springer Nature, 2020.
Gutierrez-Fernandez J, Kaszuba K, Minhas GS, Baradaran R, Tambalo M, Gallagher DT, Sazanov LA. 2020. Key role of quinone in the mechanism of respiratory complex I. Nature Communications. 11(1), 4135.
Gutierrez-Fernandez, Javier, et al. “Key Role of Quinone in the Mechanism of Respiratory Complex I.” Nature Communications, vol. 11, no. 1, 4135, Springer Nature, 2020, doi:10.1038/s41467-020-17957-0.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2020-08-31
MD5 Checksum
52b96f41d7d0db9728064c08da00d030


External material:
Press Release
Description
News on IST Homepage

Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Sources

PMID: 32811817
PubMed | Europe PMC

Search this title in

Google Scholar