Mechanisms of drug interactions between translation-inhibiting antibiotics

B. Kavcic, G. Tkačik, M.T. Bollenbach, Nature Communications 11 (2020).

Download
OA 2020_NatureComm_Kavcic.pdf 1.97 MB

Journal Article | Published | English
Department
Abstract
Antibiotics that interfere with translation, when combined, interact in diverse and difficult-to-predict ways. Here, we explain these interactions by “translation bottlenecks”: points in the translation cycle where antibiotics block ribosomal progression. To elucidate the underlying mechanisms of drug interactions between translation inhibitors, we generate translation bottlenecks genetically using inducible control of translation factors that regulate well-defined translation cycle steps. These perturbations accurately mimic antibiotic action and drug interactions, supporting that the interplay of different translation bottlenecks causes these interactions. We further show that growth laws, combined with drug uptake and binding kinetics, enable the direct prediction of a large fraction of observed interactions, yet fail to predict suppression. However, varying two translation bottlenecks simultaneously supports that dense traffic of ribosomes and competition for translation factors account for the previously unexplained suppression. These results highlight the importance of “continuous epistasis” in bacterial physiology.
Publishing Year
Date Published
2020-08-11
Journal Title
Nature Communications
Acknowledgement
We thank M. Hennessey-Wesen, I. Tomanek, K. Jain, A. Staron, K. Tomasek, M. Scott, K.C. Huang, and Z. Gitai for reading the manuscript and constructive comments. B.K. is indebted to C. Guet for additional guidance and generous support, which rendered this work possible. B.K. thanks all members of Guet group for many helpful discussions and sharing of resources. B.K. additionally acknowledges the tremendous support from A. Angermayr and K. Mitosch with experimental work. We further thank E. Brown for helpful comments regarding lamotrigine, and A. Buskirk for valuable suggestions regarding the ribosome footprint size. This work was supported in part by Austrian Science Fund (FWF) standalone grants P 27201-B22 (to T.B.) and P 28844 (to G.T.), HFSP program Grant RGP0042/2013 (to T.B.), German Research Foundation (DFG) standalone grant BO 3502/2-1 (to T.B.), and German Research Foundation (DFG) Collaborative Research Centre (SFB) 1310 (to T.B.). Open access funding provided by Projekt DEAL.
Volume
11
Article Number
4013
ISSN
IST-REx-ID

Cite this

Kavcic B, Tkačik G, Bollenbach MT. Mechanisms of drug interactions between translation-inhibiting antibiotics. Nature Communications. 2020;11. doi:10.1038/s41467-020-17734-z
Kavcic, B., Tkačik, G., & Bollenbach, M. T. (2020). Mechanisms of drug interactions between translation-inhibiting antibiotics. Nature Communications, 11. https://doi.org/10.1038/s41467-020-17734-z
Kavcic, Bor, Gašper Tkačik, and Mark Tobias Bollenbach. “Mechanisms of Drug Interactions between Translation-Inhibiting Antibiotics.” Nature Communications 11 (2020). https://doi.org/10.1038/s41467-020-17734-z.
B. Kavcic, G. Tkačik, and M. T. Bollenbach, “Mechanisms of drug interactions between translation-inhibiting antibiotics,” Nature Communications, vol. 11, 2020.
Kavcic B, Tkačik G, Bollenbach MT. 2020. Mechanisms of drug interactions between translation-inhibiting antibiotics. Nature Communications. 11.
Kavcic, Bor, et al. “Mechanisms of Drug Interactions between Translation-Inhibiting Antibiotics.” Nature Communications, vol. 11, 4013, Springer Nature, 2020, doi:10.1038/s41467-020-17734-z.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2020-08-17
MD5 Checksum
986bebb308850a55850028d3d2b5b664


Export

Marked Publications

Open Data IST Research Explorer

Search this title in

Google Scholar