--- _id: '822' abstract: - lang: eng text: 'Polymicrobial infections constitute small ecosystems that accommodate several bacterial species. Commonly, these bacteria are investigated in isolation. However, it is unknown to what extent the isolates interact and whether their interactions alter bacterial growth and ecosystem resilience in the presence and absence of antibiotics. We quantified the complete ecological interaction network for 72 bacterial isolates collected from 23 individuals diagnosed with polymicrobial urinary tract infections and found that most interactions cluster based on evolutionary relatedness. Statistical network analysis revealed that competitive and cooperative reciprocal interactions are enriched in the global network, while cooperative interactions are depleted in the individual host community networks. A population dynamics model parameterized by our measurements suggests that interactions restrict community stability, explaining the observed species diversity of these communities. We further show that the clinical isolates frequently protect each other from clinically relevant antibiotics. Together, these results highlight that ecological interactions are crucial for the growth and survival of bacteria in polymicrobial infection communities and affect their assembly and resilience. ' article_processing_charge: No author: - first_name: Marjon full_name: De Vos, Marjon id: 3111FFAC-F248-11E8-B48F-1D18A9856A87 last_name: De Vos - first_name: Marcin P full_name: Zagórski, Marcin P id: 343DA0DC-F248-11E8-B48F-1D18A9856A87 last_name: Zagórski orcid: 0000-0001-7896-7762 - first_name: Alan full_name: Mcnally, Alan last_name: Mcnally - first_name: Mark Tobias full_name: Bollenbach, Mark Tobias id: 3E6DB97A-F248-11E8-B48F-1D18A9856A87 last_name: Bollenbach orcid: 0000-0003-4398-476X citation: ama: de Vos M, Zagórski MP, Mcnally A, Bollenbach MT. Interaction networks, ecological stability, and collective antibiotic tolerance in polymicrobial infections. PNAS. 2017;114(40):10666-10671. doi:10.1073/pnas.1713372114 apa: de Vos, M., Zagórski, M. P., Mcnally, A., & Bollenbach, M. T. (2017). Interaction networks, ecological stability, and collective antibiotic tolerance in polymicrobial infections. PNAS. National Academy of Sciences. https://doi.org/10.1073/pnas.1713372114 chicago: Vos, Marjon de, Marcin P Zagórski, Alan Mcnally, and Mark Tobias Bollenbach. “Interaction Networks, Ecological Stability, and Collective Antibiotic Tolerance in Polymicrobial Infections.” PNAS. National Academy of Sciences, 2017. https://doi.org/10.1073/pnas.1713372114. ieee: M. de Vos, M. P. Zagórski, A. Mcnally, and M. T. Bollenbach, “Interaction networks, ecological stability, and collective antibiotic tolerance in polymicrobial infections,” PNAS, vol. 114, no. 40. National Academy of Sciences, pp. 10666–10671, 2017. ista: de Vos M, Zagórski MP, Mcnally A, Bollenbach MT. 2017. Interaction networks, ecological stability, and collective antibiotic tolerance in polymicrobial infections. PNAS. 114(40), 10666–10671. mla: de Vos, Marjon, et al. “Interaction Networks, Ecological Stability, and Collective Antibiotic Tolerance in Polymicrobial Infections.” PNAS, vol. 114, no. 40, National Academy of Sciences, 2017, pp. 10666–71, doi:10.1073/pnas.1713372114. short: M. de Vos, M.P. Zagórski, A. Mcnally, M.T. Bollenbach, PNAS 114 (2017) 10666–10671. date_created: 2018-12-11T11:48:41Z date_published: 2017-10-03T00:00:00Z date_updated: 2023-09-26T16:18:48Z day: '03' department: - _id: ToBo doi: 10.1073/pnas.1713372114 ec_funded: 1 external_id: isi: - '000412130500061' pmid: - '28923953' intvolume: ' 114' isi: 1 issue: '40' language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5635929/ month: '10' oa: 1 oa_version: Submitted Version page: 10666 - 10671 pmid: 1 project: - _id: 25E83C2C-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '303507' name: Optimality principles in responses to antibiotics - _id: 25E9AF9E-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P27201-B22 name: Revealing the mechanisms underlying drug interactions publication: PNAS publication_identifier: issn: - '00278424' publication_status: published publisher: National Academy of Sciences publist_id: '6827' quality_controlled: '1' scopus_import: '1' status: public title: Interaction networks, ecological stability, and collective antibiotic tolerance in polymicrobial infections type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 114 year: '2017' ...