Phosphorous incorporation in Pd2Sn alloys for electrocatalytic ethanol oxidation

X. Yu, J. Liu, J. Li, Z. Luo, Y. Zuo, C. Xing, J. Llorca, D. Nasiou, J. Arbiol, K. Pan, T. Kleinhanns, Y. Xie, A. Cabot, Nano Energy 77 (2020).

Download
No fulltext has been uploaded. References only!

Journal Article | Epub ahead of print | English

Scopus indexed
Author
Yu, Xiaoting; Liu, Junfeng; Li, Junshan; Luo, Zhishan; Zuo, Yong; Xing, Congcong; Llorca, Jordi; Nasiou, Déspina; Arbiol, Jordi; Pan, Kai; Kleinhanns, TobiasIST Austria; Xie, Ying
All
Abstract
Direct ethanol fuel cells (DEFCs) show a huge potential to power future electric vehicles and portable electronics, but their deployment is currently limited by the unavailability of proper electrocatalysis for the ethanol oxidation reaction (EOR). In this work, we engineer a new electrocatalyst by incorporating phosphorous into a palladium-tin alloy and demonstrate a significant performance improvement toward EOR. We first detail a synthetic method to produce Pd2Sn:P nanocrystals that incorporate 35% of phosphorus. These nanoparticles are supported on carbon black and tested for EOR. Pd2Sn:P/C catalysts exhibit mass current densities up to 5.03 A mgPd−1, well above those of Pd2Sn/C, PdP2/C and Pd/C reference catalysts. Furthermore, a twofold lower Tafel slope and a much longer durability are revealed for the Pd2Sn:P/C catalyst compared with Pd/C. The performance improvement is rationalized with the aid of density functional theory (DFT) calculations considering different phosphorous chemical environments. Depending on its oxidation state, surface phosphorus introduces sites with low energy OH− adsorption and/or strongly influences the electronic structure of palladium and tin to facilitate the oxidation of the acetyl to acetic acid, which is considered the EOR rate limiting step. DFT calculations also points out that the durability improvement of Pd2Sn:P/C catalyst is associated to the promotion of OH adsorption that accelerates the oxidation of intermediate poisoning COads, reactivating the catalyst surface.
Publishing Year
Date Published
2020-07-19
Journal Title
Nano Energy
Volume
77
Issue
11
Article Number
105116
ISSN
IST-REx-ID

Cite this

Yu X, Liu J, Li J, et al. Phosphorous incorporation in Pd2Sn alloys for electrocatalytic ethanol oxidation. Nano Energy. 2020;77(11). doi:10.1016/j.nanoen.2020.105116
Yu, X., Liu, J., Li, J., Luo, Z., Zuo, Y., Xing, C., … Cabot, A. (2020). Phosphorous incorporation in Pd2Sn alloys for electrocatalytic ethanol oxidation. Nano Energy, 77(11). https://doi.org/10.1016/j.nanoen.2020.105116
Yu, Xiaoting, Junfeng Liu, Junshan Li, Zhishan Luo, Yong Zuo, Congcong Xing, Jordi Llorca, et al. “Phosphorous Incorporation in Pd2Sn Alloys for Electrocatalytic Ethanol Oxidation.” Nano Energy 77, no. 11 (2020). https://doi.org/10.1016/j.nanoen.2020.105116.
X. Yu et al., “Phosphorous incorporation in Pd2Sn alloys for electrocatalytic ethanol oxidation,” Nano Energy, vol. 77, no. 11, 2020.
Yu X, Liu J, Li J, Luo Z, Zuo Y, Xing C, Llorca J, Nasiou D, Arbiol J, Pan K, Kleinhanns T, Xie Y, Cabot A. 2020. Phosphorous incorporation in Pd2Sn alloys for electrocatalytic ethanol oxidation. Nano Energy. 77(11).
Yu, Xiaoting, et al. “Phosphorous Incorporation in Pd2Sn Alloys for Electrocatalytic Ethanol Oxidation.” Nano Energy, vol. 77, no. 11, 105116, Elsevier, 2020, doi:10.1016/j.nanoen.2020.105116.

Export

Marked Publications

Open Data IST Research Explorer

Search this title in

Google Scholar