Competitive salt precipitation/dissolution during free‐water reduction in water‐in‐salt electrolyte

Bouchal R, Li Z, Bongu C, Le Vot S, Berthelot R, Rotenberg B, Favier F, Freunberger SA, Salanne M, Fontaine O. 2020. Competitive salt precipitation/dissolution during free‐water reduction in water‐in‐salt electrolyte. Angewandte Chemie. 132(37), 16047–16051.

Download
OA 2020_AngChemieDE_Bouchal.pdf 1.90 MB

Journal Article | Published | English

Scopus indexed
Author
Bouchal, Roza; Li, Zhujie; Bongu, Chandra; Le Vot, Steven; Berthelot, Romain; Rotenberg, Benjamin; Favier, Frederic; Freunberger, Stefan AlexanderISTA ; Salanne, Mathieu; Fontaine, Olivier
Department
Abstract
Water-in-salt electrolytes based on highly concentrated bis(trifluoromethyl)sulfonimide (TFSI) promise aqueous electrolytes with stabilities approaching 3 V. However, especially with an electrode approaching the cathodic (reductive) stability, cycling stability is insufficient. While stability critically relies on a solid electrolyte interphase (SEI), the mechanism behind the cathodic stability limit remains unclear. Here, we reveal two distinct reduction potentials for the chemical environments of ‘free’ and ‘bound’ water and that both contribute to SEI formation. Free-water is reduced ~1V above bound water in a hydrogen evolution reaction (HER) and responsible for SEI formation via reactive intermediates of the HER; concurrent LiTFSI precipitation/dissolution establishes a dynamic interface. The free-water population emerges, therefore, as the handle to extend the cathodic limit of aqueous electrolytes and the battery cycling stability.
Publishing Year
Date Published
2020-09-07
Journal Title
Angewandte Chemie
Volume
132
Issue
37
Page
16047-16051
ISSN
eISSN
IST-REx-ID

Cite this

Bouchal R, Li Z, Bongu C, et al. Competitive salt precipitation/dissolution during free‐water reduction in water‐in‐salt electrolyte. Angewandte Chemie. 2020;132(37):16047-16051. doi:10.1002/ange.202005378
Bouchal, R., Li, Z., Bongu, C., Le Vot, S., Berthelot, R., Rotenberg, B., … Fontaine, O. (2020). Competitive salt precipitation/dissolution during free‐water reduction in water‐in‐salt electrolyte. Angewandte Chemie. Wiley. https://doi.org/10.1002/ange.202005378
Bouchal, Roza, Zhujie Li, Chandra Bongu, Steven Le Vot, Romain Berthelot, Benjamin Rotenberg, Frederic Favier, Stefan Alexander Freunberger, Mathieu Salanne, and Olivier Fontaine. “Competitive Salt Precipitation/Dissolution during Free‐water Reduction in Water‐in‐salt Electrolyte.” Angewandte Chemie. Wiley, 2020. https://doi.org/10.1002/ange.202005378.
R. Bouchal et al., “Competitive salt precipitation/dissolution during free‐water reduction in water‐in‐salt electrolyte,” Angewandte Chemie, vol. 132, no. 37. Wiley, pp. 16047–16051, 2020.
Bouchal R, Li Z, Bongu C, Le Vot S, Berthelot R, Rotenberg B, Favier F, Freunberger SA, Salanne M, Fontaine O. 2020. Competitive salt precipitation/dissolution during free‐water reduction in water‐in‐salt electrolyte. Angewandte Chemie. 132(37), 16047–16051.
Bouchal, Roza, et al. “Competitive Salt Precipitation/Dissolution during Free‐water Reduction in Water‐in‐salt Electrolyte.” Angewandte Chemie, vol. 132, no. 37, Wiley, 2020, pp. 16047–51, doi:10.1002/ange.202005378.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2020-09-17
MD5 Checksum
7dd0a56f6bd5de08ea75b1ec388c91bc


Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar