The CEP5 peptide promotes abiotic stress tolerance, as revealed by quantitative proteomics, and attenuates the AUX/IAA equilibrium in Arabidopsis

Smith S, Zhu S, Joos L, Roberts I, Nikonorova N, Vu L, Stes E, Cho H, Larrieu A, Xuan W, Goodall B, van de Cotte B, Waite J, Rigal A, R Harborough S, Persiau G, Vanneste S, Kirschner G, Vandermarliere E, Martens L, Stahl Y, Audenaert D, Friml J, Felix G, Simon R, Bennett M, Bishopp A, De Jaeger G, Ljung K, Kepinski S, Robert S, Nemhauser J, Hwang I, Gevaert K, Beeckman T, De Smet I. 2020. The CEP5 peptide promotes abiotic stress tolerance, as revealed by quantitative proteomics, and attenuates the AUX/IAA equilibrium in Arabidopsis. Molecular & Cellular Proteomics. 19(8), 1248–1262.

Download
OA 2020_MCP_Smith.pdf 1.63 MB

Journal Article | Published | English

Scopus indexed
Author
Smith, S; Zhu, S; Joos, L; Roberts, I; Nikonorova, N; Vu, LD; Stes, E; Cho, H; Larrieu, A; Xuan, W; Goodall, B; van de Cotte, B
All
Department
Abstract
Peptides derived from non-functional precursors play important roles in various developmental processes, but also in (a)biotic stress signaling. Our (phospho)proteome-wide analyses of C-terminally encoded peptide 5 (CEP5)-mediated changes revealed an impact on abiotic stress-related processes. Drought has a dramatic impact on plant growth, development and reproduction, and the plant hormone auxin plays a role in drought responses. Our genetic, physiological, biochemical and pharmacological results demonstrated that CEP5-mediated signaling is relevant for osmotic and drought stress tolerance in Arabidopsis, and that CEP5 specifically counteracts auxin effects. Specifically, we found that CEP5 signaling stabilizes AUX/IAA transcriptional repressors, suggesting the existence of a novel peptide-dependent control mechanism that tunes auxin signaling. These observations align with the recently described role of AUX/IAAs in stress tolerance and provide a novel role for CEP5 in osmotic and drought stress tolerance.
Publishing Year
Date Published
2020-08-01
Journal Title
Molecular & Cellular Proteomics
Acknowledgement
We thank Maria Njo, Sarah De Cokere, Marieke Mispelaere and Darren Wells, for practical assistance, Daniël Van Damme for assistance with image analysis, Marnik Vuylsteke for advice on statistics, Catherine Perrot-Rechenmann for useful discussions, Steffen Lau for critical reading oft he manuscript, and Philip Benfey, Gerd Jürgens, Philippe Nacry, Frederik Börnke, and Frans Tax for sharing materials.
Volume
19
Issue
8
Page
1248-1262
IST-REx-ID

Cite this

Smith S, Zhu S, Joos L, et al. The CEP5 peptide promotes abiotic stress tolerance, as revealed by quantitative proteomics, and attenuates the AUX/IAA equilibrium in Arabidopsis. Molecular & Cellular Proteomics. 2020;19(8):1248-1262. doi:10.1074/mcp.ra119.001826
Smith, S., Zhu, S., Joos, L., Roberts, I., Nikonorova, N., Vu, L., … De Smet, I. (2020). The CEP5 peptide promotes abiotic stress tolerance, as revealed by quantitative proteomics, and attenuates the AUX/IAA equilibrium in Arabidopsis. Molecular & Cellular Proteomics. American Society for Biochemistry and Molecular Biology. https://doi.org/10.1074/mcp.ra119.001826
Smith, S, S Zhu, L Joos, I Roberts, N Nikonorova, LD Vu, E Stes, et al. “The CEP5 Peptide Promotes Abiotic Stress Tolerance, as Revealed by Quantitative Proteomics, and Attenuates the AUX/IAA Equilibrium in Arabidopsis.” Molecular & Cellular Proteomics. American Society for Biochemistry and Molecular Biology, 2020. https://doi.org/10.1074/mcp.ra119.001826.
S. Smith et al., “The CEP5 peptide promotes abiotic stress tolerance, as revealed by quantitative proteomics, and attenuates the AUX/IAA equilibrium in Arabidopsis,” Molecular & Cellular Proteomics, vol. 19, no. 8. American Society for Biochemistry and Molecular Biology, pp. 1248–1262, 2020.
Smith S, Zhu S, Joos L, Roberts I, Nikonorova N, Vu L, Stes E, Cho H, Larrieu A, Xuan W, Goodall B, van de Cotte B, Waite J, Rigal A, R Harborough S, Persiau G, Vanneste S, Kirschner G, Vandermarliere E, Martens L, Stahl Y, Audenaert D, Friml J, Felix G, Simon R, Bennett M, Bishopp A, De Jaeger G, Ljung K, Kepinski S, Robert S, Nemhauser J, Hwang I, Gevaert K, Beeckman T, De Smet I. 2020. The CEP5 peptide promotes abiotic stress tolerance, as revealed by quantitative proteomics, and attenuates the AUX/IAA equilibrium in Arabidopsis. Molecular & Cellular Proteomics. 19(8), 1248–1262.
Smith, S., et al. “The CEP5 Peptide Promotes Abiotic Stress Tolerance, as Revealed by Quantitative Proteomics, and Attenuates the AUX/IAA Equilibrium in Arabidopsis.” Molecular & Cellular Proteomics, vol. 19, no. 8, American Society for Biochemistry and Molecular Biology, 2020, pp. 1248–62, doi:10.1074/mcp.ra119.001826.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
Access Level
OA Open Access
Date Uploaded
2021-05-05
MD5 Checksum
3f3f37b4a1ba2cfd270fc7733dd89680


Export

Marked Publications

Open Data IST Research Explorer

Sources

PMID: 32404488
PubMed | Europe PMC

Search this title in

Google Scholar