The CEP5 peptide promotes abiotic stress tolerance, as revealed by quantitative proteomics, and attenuates the AUX/IAA equilibrium in Arabidopsis

S. Smith, S. Zhu, L. Joos, I. Roberts, N. Nikonorova, L. Vu, E. Stes, H. Cho, A. Larrieu, W. Xuan, B. Goodall, B. van de Cotte, J. Waite, A. Rigal, S. R Harborough, G. Persiau, S. Vanneste, G. Kirschner, E. Vandermarliere, L. Martens, Y. Stahl, D. Audenaert, J. Friml, G. Felix, R. Simon, M. Bennett, A. Bishopp, G. De Jaeger, K. Ljung, S. Kepinski, S. Robert, J. Nemhauser, I. Hwang, K. Gevaert, T. Beeckman, I. De Smet, Molecular & Celluluar Proteomics (n.d.).


Journal Article | In Press | English
Author
Smith, S; Zhu, S; Joos, L; Roberts, I; Nikonorova, N; Vu, LD; Stes, E; Cho, H; Larrieu, A; Xuan, W; Goodall, B; van de Cotte, B
All
Department
Abstract
Peptides derived from non-functional precursors play important roles in various developmental processes, but also in (a)biotic stress signaling. Our (phospho)proteome-wide analyses of C-terminally encoded peptide 5 (CEP5)-mediated changes revealed an impact on abiotic stress-related processes. Drought has a dramatic impact on plant growth, development and reproduction, and the plant hormone auxin plays a role in drought responses. Our genetic, physiological, biochemical and pharmacological results demonstrated that CEP5-mediated signaling is relevant for osmotic and drought stress tolerance in Arabidopsis, and that CEP5 specifically counteracts auxin effects. Specifically, we found that CEP5 signaling stabilizes AUX/IAA transcriptional repressors, suggesting the existence of a novel peptide-dependent control mechanism that tunes auxin signaling. These observations align with the recently described role of AUX/IAAs in stress tolerance and provide a novel role for CEP5 in osmotic and drought stress tolerance.
Publishing Year
Date Published
2020-05-13
Journal Title
Molecular & Celluluar Proteomics
IST-REx-ID

Cite this

Smith S, Zhu S, Joos L, et al. The CEP5 peptide promotes abiotic stress tolerance, as revealed by quantitative proteomics, and attenuates the AUX/IAA equilibrium in Arabidopsis. Molecular & Celluluar Proteomics. doi:10.1074/mcp.ra119.001826
Smith, S., Zhu, S., Joos, L., Roberts, I., Nikonorova, N., Vu, L., … De Smet, I. (n.d.). The CEP5 peptide promotes abiotic stress tolerance, as revealed by quantitative proteomics, and attenuates the AUX/IAA equilibrium in Arabidopsis. Molecular & Celluluar Proteomics. https://doi.org/10.1074/mcp.ra119.001826
Smith, S, S Zhu, L Joos, I Roberts, N Nikonorova, LD Vu, E Stes, et al. “The CEP5 Peptide Promotes Abiotic Stress Tolerance, as Revealed by Quantitative Proteomics, and Attenuates the AUX/IAA Equilibrium in Arabidopsis.” Molecular & Celluluar Proteomics, n.d. https://doi.org/10.1074/mcp.ra119.001826.
S. Smith et al., “The CEP5 peptide promotes abiotic stress tolerance, as revealed by quantitative proteomics, and attenuates the AUX/IAA equilibrium in Arabidopsis,” Molecular & Celluluar Proteomics.
Smith S, Zhu S, Joos L, Roberts I, Nikonorova N, Vu L, Stes E, Cho H, Larrieu A, Xuan W, Goodall B, van de Cotte B, Waite J, Rigal A, R Harborough S, Persiau G, Vanneste S, Kirschner G, Vandermarliere E, Martens L, Stahl Y, Audenaert D, Friml J, Felix G, Simon R, Bennett M, Bishopp A, De Jaeger G, Ljung K, Kepinski S, Robert S, Nemhauser J, Hwang I, Gevaert K, Beeckman T, De Smet I. The CEP5 peptide promotes abiotic stress tolerance, as revealed by quantitative proteomics, and attenuates the AUX/IAA equilibrium in Arabidopsis. Molecular & Celluluar Proteomics.
Smith, S., et al. “The CEP5 Peptide Promotes Abiotic Stress Tolerance, as Revealed by Quantitative Proteomics, and Attenuates the AUX/IAA Equilibrium in Arabidopsis.” Molecular & Celluluar Proteomics, American Society for Biochemistry and Molecular Biology, doi:10.1074/mcp.ra119.001826.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data IST Research Explorer

Sources

PMID: 32404488
PubMed | Europe PMC

Search this title in

Google Scholar