Hard antinodal gap revealed by quantum oscillations in the pseudogap regime of underdoped high-Tc superconductors

M. Hartstein, Y.T. Hsu, K.A. Modic, J. Porras, T. Loew, M.L. Tacon, H. Zuo, J. Wang, Z. Zhu, M.K. Chan, R.D. Mcdonald, G.G. Lonzarich, B. Keimer, S.E. Sebastian, N. Harrison, Nature Physics (2020).


Journal Article | Epub ahead of print | English
Author
Hartstein, Máté; Hsu, Yu Te; Modic, Kimberly AIST Austria ; Porras, Juan; Loew, Toshinao; Tacon, Matthieu Le; Zuo, Huakun; Wang, Jinhua; Zhu, Zengwei; Chan, Mun K.; Mcdonald, Ross D.; Lonzarich, Gilbert G.
All
Department
Abstract
An understanding of the missing antinodal electronic excitations in the pseudogap state is essential for uncovering the physics of the underdoped cuprate high-temperature superconductors1,2,3,4,5,6. The majority of high-temperature experiments performed thus far, however, have been unable to discern whether the antinodal states are rendered unobservable due to their damping or whether they vanish due to their gapping7,8,9,10,11,12,13,14,15,16,17,18. Here, we distinguish between these two scenarios by using quantum oscillations to examine whether the small Fermi surface pocket, found to occupy only 2% of the Brillouin zone in the underdoped cuprates19,20,21,22,23,24, exists in isolation against a majority of completely gapped density of states spanning the antinodes, or whether it is thermodynamically coupled to a background of ungapped antinodal states. We find that quantum oscillations associated with the small Fermi surface pocket exhibit a signature sawtooth waveform characteristic of an isolated two-dimensional Fermi surface pocket25,26,27,28,29,30,31,32. This finding reveals that the antinodal states are destroyed by a hard gap that extends over the majority of the Brillouin zone, placing strong constraints on a drastic underlying origin of quasiparticle disappearance over almost the entire Brillouin zone in the pseudogap regime7,8,9,10,11,12,13,14,15,16,17,18.
Publishing Year
Date Published
2020-05-25
Journal Title
Nature Physics
ISSN
eISSN
IST-REx-ID

Cite this

Hartstein M, Hsu YT, Modic KA, et al. Hard antinodal gap revealed by quantum oscillations in the pseudogap regime of underdoped high-Tc superconductors. Nature Physics. 2020. doi:10.1038/s41567-020-0910-0
Hartstein, M., Hsu, Y. T., Modic, K. A., Porras, J., Loew, T., Tacon, M. L., … Harrison, N. (2020). Hard antinodal gap revealed by quantum oscillations in the pseudogap regime of underdoped high-Tc superconductors. Nature Physics. https://doi.org/10.1038/s41567-020-0910-0
Hartstein, Máté, Yu Te Hsu, Kimberly A Modic, Juan Porras, Toshinao Loew, Matthieu Le Tacon, Huakun Zuo, et al. “Hard Antinodal Gap Revealed by Quantum Oscillations in the Pseudogap Regime of Underdoped High-Tc Superconductors.” Nature Physics, 2020. https://doi.org/10.1038/s41567-020-0910-0.
M. Hartstein et al., “Hard antinodal gap revealed by quantum oscillations in the pseudogap regime of underdoped high-Tc superconductors,” Nature Physics, 2020.
Hartstein M, Hsu YT, Modic KA, Porras J, Loew T, Tacon ML, Zuo H, Wang J, Zhu Z, Chan MK, Mcdonald RD, Lonzarich GG, Keimer B, Sebastian SE, Harrison N. 2020. Hard antinodal gap revealed by quantum oscillations in the pseudogap regime of underdoped high-Tc superconductors. Nature Physics.
Hartstein, Máté, et al. “Hard Antinodal Gap Revealed by Quantum Oscillations in the Pseudogap Regime of Underdoped High-Tc Superconductors.” Nature Physics, Springer Nature, 2020, doi:10.1038/s41567-020-0910-0.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data IST Research Explorer

Sources

arXiv 2005.14123

Search this title in

Google Scholar