On the existence of ordinary triangles

R. Fulek, H. Mojarrad, M. Naszódi, J. Solymosi, S. Stich, M. Szedlák, Computational Geometry: Theory and Applications 66 (2017) 28–31.


Journal Article | Published | English
Author
Fulek, RadoslavIST Austria ; Mojarrad, Hossein; Naszódi, Márton; Solymosi, József; Stich, Sebastian; Szedlák, May
Department
Abstract
Let P be a finite point set in the plane. A cordinary triangle in P is a subset of P consisting of three non-collinear points such that each of the three lines determined by the three points contains at most c points of P . Motivated by a question of Erdös, and answering a question of de Zeeuw, we prove that there exists a constant c > 0such that P contains a c-ordinary triangle, provided that P is not contained in the union of two lines. Furthermore, the number of c-ordinary triangles in P is Ω(| P |).
Publishing Year
Date Published
2017-01-01
Journal Title
Computational Geometry: Theory and Applications
Volume
66
Page
28 - 31
ISSN
IST-REx-ID
793

Cite this

Fulek R, Mojarrad H, Naszódi M, Solymosi J, Stich S, Szedlák M. On the existence of ordinary triangles. Computational Geometry: Theory and Applications. 2017;66:28-31. doi:10.1016/j.comgeo.2017.07.002
Fulek, R., Mojarrad, H., Naszódi, M., Solymosi, J., Stich, S., & Szedlák, M. (2017). On the existence of ordinary triangles. Computational Geometry: Theory and Applications, 66, 28–31. https://doi.org/10.1016/j.comgeo.2017.07.002
Fulek, Radoslav, Hossein Mojarrad, Márton Naszódi, József Solymosi, Sebastian Stich, and May Szedlák. “On the Existence of Ordinary Triangles.” Computational Geometry: Theory and Applications 66 (2017): 28–31. https://doi.org/10.1016/j.comgeo.2017.07.002.
R. Fulek, H. Mojarrad, M. Naszódi, J. Solymosi, S. Stich, and M. Szedlák, “On the existence of ordinary triangles,” Computational Geometry: Theory and Applications, vol. 66, pp. 28–31, 2017.
Fulek R, Mojarrad H, Naszódi M, Solymosi J, Stich S, Szedlák M. 2017. On the existence of ordinary triangles. Computational Geometry: Theory and Applications. 66, 28–31.
Fulek, Radoslav, et al. “On the Existence of Ordinary Triangles.” Computational Geometry: Theory and Applications, vol. 66, Elsevier, 2017, pp. 28–31, doi:10.1016/j.comgeo.2017.07.002.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data IST Research Explorer

Search this title in

Google Scholar