{"publication":"Science Advances","article_processing_charge":"No","file":[{"date_created":"2020-06-02T09:18:36Z","file_id":"7913","content_type":"application/pdf","checksum":"16fa61cc1951b444ee74c07188cda9da","date_updated":"2020-07-14T12:48:05Z","file_size":795822,"file_name":"2020_ScienceAdvances_Barzanjeh.pdf","relation":"main_file","access_level":"open_access","creator":"dernst"}],"volume":6,"quality_controlled":"1","oa_version":"Published Version","ec_funded":1,"title":"Microwave quantum illumination using a digital receiver","date_created":"2020-05-31T22:00:49Z","type":"journal_article","doi":"10.1126/sciadv.abb0451","author":[{"first_name":"Shabir","full_name":"Barzanjeh, Shabir","last_name":"Barzanjeh","orcid":"0000-0003-0415-1423","id":"2D25E1F6-F248-11E8-B48F-1D18A9856A87"},{"last_name":"Pirandola","first_name":"S.","full_name":"Pirandola, S."},{"last_name":"Vitali","full_name":"Vitali, D","first_name":"D"},{"first_name":"Johannes M","last_name":"Fink","full_name":"Fink, Johannes M","orcid":"0000-0001-8112-028X","id":"4B591CBA-F248-11E8-B48F-1D18A9856A87"}],"intvolume":" 6","publisher":"AAAS","status":"public","department":[{"_id":"JoFi"}],"publication_identifier":{"eissn":["23752548"]},"tmp":{"legal_code_url":"https://creativecommons.org/licenses/by/4.0/legalcode","name":"Creative Commons Attribution 4.0 International Public License (CC-BY 4.0)","short":"CC BY (4.0)","image":"/images/cc_by.png"},"project":[{"call_identifier":"H2020","grant_number":"758053","name":"A Fiber Optic Transceiver for Superconducting Qubits","_id":"26336814-B435-11E9-9278-68D0E5697425"},{"name":"Quantum readout techniques and technologies","_id":"237CBA6C-32DE-11EA-91FC-C7463DDC885E","grant_number":"862644","call_identifier":"H2020"},{"name":"Microwave-to-Optical Quantum Link: Quantum Teleportation and Quantum Illumination with cavity Optomechanics SUPEREOM","_id":"258047B6-B435-11E9-9278-68D0E5697425","grant_number":"707438","call_identifier":"H2020"},{"_id":"257EB838-B435-11E9-9278-68D0E5697425","name":"Hybrid Optomechanical Technologies","call_identifier":"H2020","grant_number":"732894"},{"name":"Integrating superconducting quantum circuits","_id":"26927A52-B435-11E9-9278-68D0E5697425","grant_number":"F07105","call_identifier":"FWF"}],"related_material":{"link":[{"url":"https://ist.ac.at/en/news/scientists-demonstrate-quantum-radar-prototype/","relation":"press_release","description":"News on IST Homepage"}],"record":[{"id":"9001","status":"public","relation":"later_version"}]},"_id":"7910","ddc":["530"],"article_type":"original","year":"2020","oa":1,"file_date_updated":"2020-07-14T12:48:05Z","date_published":"2020-05-06T00:00:00Z","publication_status":"published","has_accepted_license":"1","user_id":"4359f0d1-fa6c-11eb-b949-802e58b17ae8","external_id":{"arxiv":["1908.03058"],"isi":["000531171100045"]},"day":"06","date_updated":"2023-08-24T11:10:49Z","issue":"19","citation":{"short":"S. Barzanjeh, S. Pirandola, D. Vitali, J.M. Fink, Science Advances 6 (2020).","chicago":"Barzanjeh, Shabir, S. Pirandola, D Vitali, and Johannes M Fink. “Microwave Quantum Illumination Using a Digital Receiver.” Science Advances. AAAS, 2020. https://doi.org/10.1126/sciadv.abb0451.","ieee":"S. Barzanjeh, S. Pirandola, D. Vitali, and J. M. Fink, “Microwave quantum illumination using a digital receiver,” Science Advances, vol. 6, no. 19. AAAS, 2020.","ista":"Barzanjeh S, Pirandola S, Vitali D, Fink JM. 2020. Microwave quantum illumination using a digital receiver. Science Advances. 6(19), eabb0451.","ama":"Barzanjeh S, Pirandola S, Vitali D, Fink JM. Microwave quantum illumination using a digital receiver. Science Advances. 2020;6(19). doi:10.1126/sciadv.abb0451","apa":"Barzanjeh, S., Pirandola, S., Vitali, D., & Fink, J. M. (2020). Microwave quantum illumination using a digital receiver. Science Advances. AAAS. https://doi.org/10.1126/sciadv.abb0451","mla":"Barzanjeh, Shabir, et al. “Microwave Quantum Illumination Using a Digital Receiver.” Science Advances, vol. 6, no. 19, eabb0451, AAAS, 2020, doi:10.1126/sciadv.abb0451."},"article_number":"eabb0451","scopus_import":"1","language":[{"iso":"eng"}],"isi":1,"month":"05","abstract":[{"lang":"eng","text":"Quantum illumination uses entangled signal-idler photon pairs to boost the detection efficiency of low-reflectivity objects in environments with bright thermal noise. Its advantage is particularly evident at low signal powers, a promising feature for applications such as noninvasive biomedical scanning or low-power short-range radar. Here, we experimentally investigate the concept of quantum illumination at microwave frequencies. We generate entangled fields to illuminate a room-temperature object at a distance of 1 m in a free-space detection setup. We implement a digital phase-conjugate receiver based on linear quadrature measurements that outperforms a symmetric classical noise radar in the same conditions, despite the entanglement-breaking signal path. Starting from experimental data, we also simulate the case of perfect idler photon number detection, which results in a quantum advantage compared with the relative classical benchmark. Our results highlight the opportunities and challenges in the way toward a first room-temperature application of microwave quantum circuits."}]}