Exclusive electron transport in Core@Shell PbTe@PbS colloidal semiconductor nanocrystal assemblies

R. Miranti, D. Shin, R.D. Septianto, M. Ibáñez, M.V. Kovalenko, N. Matsushita, Y. Iwasa, S.Z. Bisri, ACS Nano 14 (2020) 3242–3250.

Download
No fulltext has been uploaded. References only!

Journal Article | Published | English

Scopus indexed
Author
Miranti, Retno; Shin, Daiki; Septianto, Ricky Dwi; Ibanez Sabate, MariaIST Austria ; Kovalenko, Maksym V.; Matsushita, Nobuhiro; Iwasa, Yoshihiro; Bisri, Satria Zulkarnaen
Department
Abstract
Assemblies of colloidal semiconductor nanocrystals (NCs) in the form of thin solid films leverage the size-dependent quantum confinement properties and the wet chemical methods vital for the development of the emerging solution-processable electronics, photonics, and optoelectronics technologies. The ability to control the charge carrier transport in the colloidal NC assemblies is fundamental for altering their electronic and optical properties for the desired applications. Here we demonstrate a strategy to render the solids of narrow-bandgap NC assemblies exclusively electron-transporting by creating a type-II heterojunction via shelling. Electronic transport of molecularly cross-linked PbTe@PbS core@shell NC assemblies is measured using both a conventional solid gate transistor and an electric-double-layer transistor, as well as compared with those of core-only PbTe NCs. In contrast to the ambipolar characteristics demonstrated by many narrow-bandgap NCs, the core@shell NCs exhibit exclusive n-type transport, i.e., drastically suppressed contribution of holes to the overall transport. The PbS shell that forms a type-II heterojunction assists the selective carrier transport by heavy doping of electrons into the PbTe-core conduction level and simultaneously strongly localizes the holes within the NC core valence level. This strongly enhanced n-type transport makes these core@shell NCs suitable for applications where ambipolar characteristics should be actively suppressed, in particular, for thermoelectric and electron-transporting layers in photovoltaic devices.
Publishing Year
Date Published
2020-03-24
Journal Title
ACS Nano
Volume
14
Issue
3
Page
3242-3250
eISSN
IST-REx-ID

Cite this

Miranti R, Shin D, Septianto RD, et al. Exclusive electron transport in Core@Shell PbTe@PbS colloidal semiconductor nanocrystal assemblies. ACS Nano. 2020;14(3):3242-3250. doi:10.1021/acsnano.9b08687
Miranti, R., Shin, D., Septianto, R. D., Ibáñez, M., Kovalenko, M. V., Matsushita, N., … Bisri, S. Z. (2020). Exclusive electron transport in Core@Shell PbTe@PbS colloidal semiconductor nanocrystal assemblies. ACS Nano, 14(3), 3242–3250. https://doi.org/10.1021/acsnano.9b08687
Miranti, Retno, Daiki Shin, Ricky Dwi Septianto, Maria Ibáñez, Maksym V. Kovalenko, Nobuhiro Matsushita, Yoshihiro Iwasa, and Satria Zulkarnaen Bisri. “Exclusive Electron Transport in Core@Shell PbTe@PbS Colloidal Semiconductor Nanocrystal Assemblies.” ACS Nano 14, no. 3 (2020): 3242–50. https://doi.org/10.1021/acsnano.9b08687.
R. Miranti et al., “Exclusive electron transport in Core@Shell PbTe@PbS colloidal semiconductor nanocrystal assemblies,” ACS Nano, vol. 14, no. 3, pp. 3242–3250, 2020.
Miranti R, Shin D, Septianto RD, Ibáñez M, Kovalenko MV, Matsushita N, Iwasa Y, Bisri SZ. 2020. Exclusive electron transport in Core@Shell PbTe@PbS colloidal semiconductor nanocrystal assemblies. ACS Nano. 14(3), 3242–3250.
Miranti, Retno, et al. “Exclusive Electron Transport in Core@Shell PbTe@PbS Colloidal Semiconductor Nanocrystal Assemblies.” ACS Nano, vol. 14, no. 3, ACS, 2020, pp. 3242–50, doi:10.1021/acsnano.9b08687.

Export

Marked Publications

Open Data IST Research Explorer

Sources

PMID: 32073817
PubMed | Europe PMC

Search this title in

Google Scholar