{"day":"01","issue":"5","page":"1644-1664","intvolume":" 32","project":[{"name":"Tracing Evolution of Auxin Transport and Polarity in Plants","grant_number":"742985","_id":"261099A6-B435-11E9-9278-68D0E5697425","call_identifier":"H2020"},{"call_identifier":"FWF","_id":"26538374-B435-11E9-9278-68D0E5697425","grant_number":"I03630","name":"Molecular mechanisms of endocytic cargo recognition in plants"}],"acknowledged_ssus":[{"_id":"Bio"}],"language":[{"iso":"eng"}],"date_created":"2020-03-28T07:39:22Z","publication_identifier":{"issn":["1040-4651"],"eissn":["1532-298X"]},"title":"Arabidopsis flippases cooperate with ARF GTPase exchange factors to regulate the trafficking and polarity of PIN auxin transporters","article_processing_charge":"No","department":[{"_id":"JiFr"}],"date_published":"2020-05-01T00:00:00Z","oa_version":"Published Version","ec_funded":1,"pmid":1,"abstract":[{"text":"Cell polarity is a fundamental feature of all multicellular organisms. In plants, prominent cell polarity markers are PIN auxin transporters crucial for plant development. To identify novel components involved in cell polarity establishment and maintenance, we carried out a forward genetic screening with PIN2:PIN1-HA;pin2 Arabidopsis plants, which ectopically express predominantly basally localized PIN1 in the root epidermal cells leading to agravitropic root growth. From the screen, we identified the regulator of PIN polarity 12 (repp12) mutation, which restored gravitropic root growth and caused PIN1-HA polarity switch from basal to apical side of root epidermal cells. Complementation experiments established the repp12 causative mutation as an amino acid substitution in Aminophospholipid ATPase3 (ALA3), a phospholipid flippase with predicted function in vesicle formation. ala3 T-DNA mutants show defects in many auxin-regulated processes, in asymmetric auxin distribution and in PIN trafficking. Analysis of quintuple and sextuple mutants confirmed a crucial role of ALA proteins in regulating plant development and in PIN trafficking and polarity. Genetic and physical interaction studies revealed that ALA3 functions together with GNOM and BIG3 ARF GEFs. Taken together, our results identified ALA3 flippase as an important interactor and regulator of ARF GEF functioning in PIN polarity, trafficking and auxin-mediated development.","lang":"eng"}],"oa":1,"type":"journal_article","publisher":"American Society of Plant Biologists","article_type":"original","_id":"7619","year":"2020","quality_controlled":"1","doi":"10.1105/tpc.19.00869","date_updated":"2023-09-05T12:21:06Z","author":[{"first_name":"Xixi","id":"61A66458-47E9-11EA-85BA-8AEAAF14E49A","last_name":"Zhang","orcid":"0000-0001-7048-4627","full_name":"Zhang, Xixi"},{"full_name":"Adamowski, Maciek","orcid":"0000-0001-6463-5257","last_name":"Adamowski","id":"45F536D2-F248-11E8-B48F-1D18A9856A87","first_name":"Maciek"},{"first_name":"Petra","last_name":"Marhavá","id":"44E59624-F248-11E8-B48F-1D18A9856A87","full_name":"Marhavá, Petra"},{"orcid":"0000-0002-0471-8285","id":"2DE75584-F248-11E8-B48F-1D18A9856A87","last_name":"Tan","first_name":"Shutang","full_name":"Tan, Shutang"},{"first_name":"Yuzhou","last_name":"Zhang","orcid":"0000-0003-2627-6956","id":"3B6137F2-F248-11E8-B48F-1D18A9856A87","full_name":"Zhang, Yuzhou"},{"last_name":"Rodriguez Solovey","id":"3922B506-F248-11E8-B48F-1D18A9856A87","orcid":"0000-0002-7244-7237","first_name":"Lesia","full_name":"Rodriguez Solovey, Lesia"},{"full_name":"Zwiewka, Marta","last_name":"Zwiewka","first_name":"Marta"},{"full_name":"Pukyšová, Vendula","last_name":"Pukyšová","first_name":"Vendula"},{"last_name":"Sánchez","first_name":"Adrià Sans","full_name":"Sánchez, Adrià Sans"},{"full_name":"Raxwal, Vivek Kumar","first_name":"Vivek Kumar","last_name":"Raxwal"},{"first_name":"Christian S.","last_name":"Hardtke","full_name":"Hardtke, Christian S."},{"full_name":"Nodzynski, Tomasz","last_name":"Nodzynski","first_name":"Tomasz"},{"last_name":"Friml","id":"4159519E-F248-11E8-B48F-1D18A9856A87","orcid":"0000-0002-8302-7596","first_name":"Jiří","full_name":"Friml, Jiří"}],"external_id":{"pmid":["32193204"],"isi":["000545741500030"]},"user_id":"c635000d-4b10-11ee-a964-aac5a93f6ac1","status":"public","publication_status":"published","isi":1,"citation":{"ista":"Zhang X, Adamowski M, Marhavá P, Tan S, Zhang Y, Rodriguez Solovey L, Zwiewka M, Pukyšová V, Sánchez AS, Raxwal VK, Hardtke CS, Nodzynski T, Friml J. 2020. Arabidopsis flippases cooperate with ARF GTPase exchange factors to regulate the trafficking and polarity of PIN auxin transporters. The Plant Cell. 32(5), 1644–1664.","mla":"Zhang, Xixi, et al. “Arabidopsis Flippases Cooperate with ARF GTPase Exchange Factors to Regulate the Trafficking and Polarity of PIN Auxin Transporters.” The Plant Cell, vol. 32, no. 5, American Society of Plant Biologists, 2020, pp. 1644–64, doi:10.1105/tpc.19.00869.","chicago":"Zhang, Xixi, Maciek Adamowski, Petra Marhavá, Shutang Tan, Yuzhou Zhang, Lesia Rodriguez Solovey, Marta Zwiewka, et al. “Arabidopsis Flippases Cooperate with ARF GTPase Exchange Factors to Regulate the Trafficking and Polarity of PIN Auxin Transporters.” The Plant Cell. American Society of Plant Biologists, 2020. https://doi.org/10.1105/tpc.19.00869.","ama":"Zhang X, Adamowski M, Marhavá P, et al. Arabidopsis flippases cooperate with ARF GTPase exchange factors to regulate the trafficking and polarity of PIN auxin transporters. The Plant Cell. 2020;32(5):1644-1664. doi:10.1105/tpc.19.00869","apa":"Zhang, X., Adamowski, M., Marhavá, P., Tan, S., Zhang, Y., Rodriguez Solovey, L., … Friml, J. (2020). Arabidopsis flippases cooperate with ARF GTPase exchange factors to regulate the trafficking and polarity of PIN auxin transporters. The Plant Cell. American Society of Plant Biologists. https://doi.org/10.1105/tpc.19.00869","short":"X. Zhang, M. Adamowski, P. Marhavá, S. Tan, Y. Zhang, L. Rodriguez Solovey, M. Zwiewka, V. Pukyšová, A.S. Sánchez, V.K. Raxwal, C.S. Hardtke, T. Nodzynski, J. Friml, The Plant Cell 32 (2020) 1644–1664.","ieee":"X. Zhang et al., “Arabidopsis flippases cooperate with ARF GTPase exchange factors to regulate the trafficking and polarity of PIN auxin transporters,” The Plant Cell, vol. 32, no. 5. American Society of Plant Biologists, pp. 1644–1664, 2020."},"month":"05","publication":"The Plant Cell","main_file_link":[{"url":"https://doi.org/10.1105/tpc.19.00869","open_access":"1"}],"scopus_import":"1","volume":32}