Powerset convolutional neural networks

C. Wendler, D.-A. Alistarh, M. Püschel, in:, Neural Information Processing Systems Foundation, 2019, pp. 927–938.

Conference Paper | Published | English
Author
Wendler, Chris; Alistarh, Dan-AdrianIST Austria; Püschel, Markus
Department
Abstract
We present a novel class of convolutional neural networks (CNNs) for set functions,i.e., data indexed with the powerset of a finite set. The convolutions are derivedas linear, shift-equivariant functions for various notions of shifts on set functions.The framework is fundamentally different from graph convolutions based on theLaplacian, as it provides not one but several basic shifts, one for each element inthe ground set. Prototypical experiments with several set function classificationtasks on synthetic datasets and on datasets derived from real-world hypergraphsdemonstrate the potential of our new powerset CNNs.
Publishing Year
Date Published
2019-12-01
Volume
32
Page
927-938
Conference
NIPS: Conference on Neural Information Processing Systems
Conference Location
Vancouver, Canada
Conference Date
2019-12-08 – 2019-12-14
IST-REx-ID

Cite this

Wendler C, Alistarh D-A, Püschel M. Powerset convolutional neural networks. In: Vol 32. Neural Information Processing Systems Foundation; 2019:927-938.
Wendler, C., Alistarh, D.-A., & Püschel, M. (2019). Powerset convolutional neural networks (Vol. 32, pp. 927–938). Presented at the NIPS: Conference on Neural Information Processing Systems, Vancouver, Canada: Neural Information Processing Systems Foundation.
Wendler, Chris, Dan-Adrian Alistarh, and Markus Püschel. “Powerset Convolutional Neural Networks,” 32:927–38. Neural Information Processing Systems Foundation, 2019.
C. Wendler, D.-A. Alistarh, and M. Püschel, “Powerset convolutional neural networks,” presented at the NIPS: Conference on Neural Information Processing Systems, Vancouver, Canada, 2019, vol. 32, pp. 927–938.
Wendler C, Alistarh D-A, Püschel M. 2019. Powerset convolutional neural networks. NIPS: Conference on Neural Information Processing Systems vol. 32. 927–938.
Wendler, Chris, et al. Powerset Convolutional Neural Networks. Vol. 32, Neural Information Processing Systems Foundation, 2019, pp. 927–38.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data IST Research Explorer

Sources

arXiv 1909.02253

Search this title in

Google Scholar