Structures of immature EIAV Gag lattices reveal a conserved role for IP6 in lentivirus assembly

R.A. Dick, C. Xu, D.R. Morado, V. Kravchuk, C.L. Ricana, T.D. Lyddon, A.M. Broad, J.R. Feathers, M.C. Johnson, V.M. Vogt, J.R. Perilla, J.A.G. Briggs, F.K. Schur, PLOS Pathogens 16 (2020).

Download
OA 2020_PLOSPatho_Dick.pdf 4.55 MB

Journal Article | Published | English

Scopus indexed
Author
Dick, Robert A.; Xu, Chaoyi; Morado, Dustin R.; Kravchuk, VladyslavIST Austria; Ricana, Clifton L.; Lyddon, Terri D.; Broad, Arianna M.; Feathers, J. Ryan; Johnson, Marc C.; Vogt, Volker M.; Perilla, Juan R.; Briggs, John A. G.
All
Department
Abstract
Retrovirus assembly is driven by the multidomain structural protein Gag. Interactions between the capsid domains (CA) of Gag result in Gag multimerization, leading to an immature virus particle that is formed by a protein lattice based on dimeric, trimeric, and hexameric protein contacts. Among retroviruses the inter- and intra-hexamer contacts differ, especially in the N-terminal sub-domain of CA (CANTD). For HIV-1 the cellular molecule inositol hexakisphosphate (IP6) interacts with and stabilizes the immature hexamer, and is required for production of infectious virus particles. We have used in vitro assembly, cryo-electron tomography and subtomogram averaging, atomistic molecular dynamics simulations and mutational analyses to study the HIV-related lentivirus equine infectious anemia virus (EIAV). In particular, we sought to understand the structural conservation of the immature lentivirus lattice and the role of IP6 in EIAV assembly. Similar to HIV-1, IP6 strongly promoted in vitro assembly of EIAV Gag proteins into virus-like particles (VLPs), which took three morphologically highly distinct forms: narrow tubes, wide tubes, and spheres. Structural characterization of these VLPs to sub-4Å resolution unexpectedly showed that all three morphologies are based on an immature lattice with preserved key structural components, highlighting the structural versatility of CA to form immature assemblies. A direct comparison between EIAV and HIV revealed that both lentiviruses maintain similar immature interfaces, which are established by both conserved and non-conserved residues. In both EIAV and HIV-1, IP6 regulates immature assembly via conserved lysine residues within the CACTD and SP. Lastly, we demonstrate that IP6 stimulates in vitro assembly of immature particles of several other retroviruses in the lentivirus genus, suggesting a conserved role for IP6 in lentiviral assembly.
Publishing Year
Date Published
2020-01-27
Journal Title
PLOS Pathogens
Acknowledged SSUs
Volume
16
Issue
1
Article Number
e1008277
ISSN
IST-REx-ID

Cite this

Dick RA, Xu C, Morado DR, et al. Structures of immature EIAV Gag lattices reveal a conserved role for IP6 in lentivirus assembly. PLOS Pathogens. 2020;16(1). doi:10.1371/journal.ppat.1008277
Dick, R. A., Xu, C., Morado, D. R., Kravchuk, V., Ricana, C. L., Lyddon, T. D., … Schur, F. K. (2020). Structures of immature EIAV Gag lattices reveal a conserved role for IP6 in lentivirus assembly. PLOS Pathogens, 16(1). https://doi.org/10.1371/journal.ppat.1008277
Dick, Robert A., Chaoyi Xu, Dustin R. Morado, Vladyslav Kravchuk, Clifton L. Ricana, Terri D. Lyddon, Arianna M. Broad, et al. “Structures of Immature EIAV Gag Lattices Reveal a Conserved Role for IP6 in Lentivirus Assembly.” PLOS Pathogens 16, no. 1 (2020). https://doi.org/10.1371/journal.ppat.1008277.
R. A. Dick et al., “Structures of immature EIAV Gag lattices reveal a conserved role for IP6 in lentivirus assembly,” PLOS Pathogens, vol. 16, no. 1, 2020.
Dick RA, Xu C, Morado DR, Kravchuk V, Ricana CL, Lyddon TD, Broad AM, Feathers JR, Johnson MC, Vogt VM, Perilla JR, Briggs JAG, Schur FK. 2020. Structures of immature EIAV Gag lattices reveal a conserved role for IP6 in lentivirus assembly. PLOS Pathogens. 16(1).
Dick, Robert A., et al. “Structures of Immature EIAV Gag Lattices Reveal a Conserved Role for IP6 in Lentivirus Assembly.” PLOS Pathogens, vol. 16, no. 1, e1008277, PLoS, 2020, doi:10.1371/journal.ppat.1008277.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
Access Level
OA Open Access
Date Uploaded
2020-02-11
MD5 Checksum
a297f54d1fef0efe4789ca00f37f241e


Export

Marked Publications

Open Data IST Research Explorer

Search this title in

Google Scholar