eGFRD in all dimensions

T.R. Sokolowski, J. Paijmans, L. Bossen, T. Miedema, M. Wehrens, N.B. Becker, K. Kaizu, K. Takahashi, M. Dogterom, P.R. ten Wolde, The Journal of Chemical Physics 150 (2019).

Journal Article | Published | English
Sokolowski, Thomas RIST Austria ; Paijmans, Joris; Bossen, Laurens; Miedema, Thomas; Wehrens, Martijn; Becker, Nils B.; Kaizu, Kazunari; Takahashi, Koichi; Dogterom, Marileen; ten Wolde, Pieter Rein
Biochemical reactions often occur at low copy numbers but at once in crowded and diverse environments. Space and stochasticity therefore play an essential role in biochemical networks. Spatial-stochastic simulations have become a prominent tool for understanding how stochasticity at the microscopic level influences the macroscopic behavior of such systems. While particle-based models guarantee the level of detail necessary to accurately describe the microscopic dynamics at very low copy numbers, the algorithms used to simulate them typically imply trade-offs between computational efficiency and biochemical accuracy. eGFRD (enhanced Green’s Function Reaction Dynamics) is an exact algorithm that evades such trade-offs by partitioning the N-particle system into M ≤ N analytically tractable one- and two-particle systems; the analytical solutions (Green’s functions) then are used to implement an event-driven particle-based scheme that allows particles to make large jumps in time and space while retaining access to their state variables at arbitrary simulation times. Here we present “eGFRD2,” a new eGFRD version that implements the principle of eGFRD in all dimensions, thus enabling efficient particle-based simulation of biochemical reaction-diffusion processes in the 3D cytoplasm, on 2D planes representing membranes, and on 1D elongated cylinders representative of, e.g., cytoskeletal tracks or DNA; in 1D, it also incorporates convective motion used to model active transport. We find that, for low particle densities, eGFRD2 is up to 6 orders of magnitude faster than conventional Brownian dynamics. We exemplify the capabilities of eGFRD2 by simulating an idealized model of Pom1 gradient formation, which involves 3D diffusion, active transport on microtubules, and autophosphorylation on the membrane, confirming recent experimental and theoretical results on this system to hold under genuinely stochastic conditions.
Publishing Year
Date Published
Journal Title
The Journal of Chemical Physics
Article Number

Cite this

Sokolowski TR, Paijmans J, Bossen L, et al. eGFRD in all dimensions. The Journal of Chemical Physics. 2019;150(5). doi:10.1063/1.5064867
Sokolowski, T. R., Paijmans, J., Bossen, L., Miedema, T., Wehrens, M., Becker, N. B., … ten Wolde, P. R. (2019). eGFRD in all dimensions. The Journal of Chemical Physics. AIP Publishing.
Sokolowski, Thomas R, Joris Paijmans, Laurens Bossen, Thomas Miedema, Martijn Wehrens, Nils B. Becker, Kazunari Kaizu, Koichi Takahashi, Marileen Dogterom, and Pieter Rein ten Wolde. “EGFRD in All Dimensions.” The Journal of Chemical Physics. AIP Publishing, 2019.
T. R. Sokolowski et al., “eGFRD in all dimensions,” The Journal of Chemical Physics, vol. 150, no. 5. AIP Publishing, 2019.
Sokolowski TR, Paijmans J, Bossen L, Miedema T, Wehrens M, Becker NB, Kaizu K, Takahashi K, Dogterom M, ten Wolde PR. 2019. eGFRD in all dimensions. The Journal of Chemical Physics. 150(5), 054108.
Sokolowski, Thomas R., et al. “EGFRD in All Dimensions.” The Journal of Chemical Physics, vol. 150, no. 5, 054108, AIP Publishing, 2019, doi:10.1063/1.5064867.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access


Marked Publications

Open Data IST Research Explorer


arXiv 1708.09364

Search this title in

Google Scholar