{"article_type":"original","abstract":[{"lang":"eng","text":"We consider Bose gases consisting of N particles trapped in a box with volume one and interacting through a repulsive potential with scattering length of order N−1 (Gross–Pitaevskii regime). We determine the ground state energy and the low-energy excitation spectrum, up to errors vanishing as N→∞. Our results confirm Bogoliubov’s predictions."}],"language":[{"iso":"eng"}],"page":"219-335","main_file_link":[{"url":"https://arxiv.org/abs/1801.01389","open_access":"1"}],"year":"2019","volume":222,"publisher":"International Press of Boston","date_created":"2020-01-30T09:30:41Z","_id":"7413","oa_version":"Preprint","publication":"Acta Mathematica","month":"06","title":"Bogoliubov theory in the Gross–Pitaevskii limit","oa":1,"day":"07","scopus_import":1,"citation":{"chicago":"Boccato, Chiara, Christian Brennecke, Serena Cenatiempo, and Benjamin Schlein. “Bogoliubov Theory in the Gross–Pitaevskii Limit.” Acta Mathematica. International Press of Boston, 2019. https://doi.org/10.4310/acta.2019.v222.n2.a1.","apa":"Boccato, C., Brennecke, C., Cenatiempo, S., & Schlein, B. (2019). Bogoliubov theory in the Gross–Pitaevskii limit. Acta Mathematica. International Press of Boston. https://doi.org/10.4310/acta.2019.v222.n2.a1","ieee":"C. Boccato, C. Brennecke, S. Cenatiempo, and B. Schlein, “Bogoliubov theory in the Gross–Pitaevskii limit,” Acta Mathematica, vol. 222, no. 2. International Press of Boston, pp. 219–335, 2019.","mla":"Boccato, Chiara, et al. “Bogoliubov Theory in the Gross–Pitaevskii Limit.” Acta Mathematica, vol. 222, no. 2, International Press of Boston, 2019, pp. 219–335, doi:10.4310/acta.2019.v222.n2.a1.","ista":"Boccato C, Brennecke C, Cenatiempo S, Schlein B. 2019. Bogoliubov theory in the Gross–Pitaevskii limit. Acta Mathematica. 222(2), 219–335.","ama":"Boccato C, Brennecke C, Cenatiempo S, Schlein B. Bogoliubov theory in the Gross–Pitaevskii limit. Acta Mathematica. 2019;222(2):219-335. doi:10.4310/acta.2019.v222.n2.a1","short":"C. Boccato, C. Brennecke, S. Cenatiempo, B. Schlein, Acta Mathematica 222 (2019) 219–335."},"type":"journal_article","date_updated":"2021-01-12T08:13:28Z","external_id":{"arxiv":["1801.01389"]},"issue":"2","publication_status":"published","date_published":"2019-06-07T00:00:00Z","user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","article_processing_charge":"No","status":"public","intvolume":" 222","doi":"10.4310/acta.2019.v222.n2.a1","publication_identifier":{"issn":["0001-5962","1871-2509"]},"department":[{"_id":"RoSe"}],"author":[{"last_name":"Boccato","full_name":"Boccato, Chiara","first_name":"Chiara","id":"342E7E22-F248-11E8-B48F-1D18A9856A87"},{"full_name":"Brennecke, Christian","last_name":"Brennecke","first_name":"Christian"},{"last_name":"Cenatiempo","full_name":"Cenatiempo, Serena","first_name":"Serena"},{"first_name":"Benjamin","full_name":"Schlein, Benjamin","last_name":"Schlein"}],"quality_controlled":"1"}