TY - JOUR
AB - Recently Kloeckner described the structure of the isometry group of the quadratic Wasserstein space W_2(R^n). It turned out that the case of the real line is exceptional in the sense that there exists an exotic isometry flow. Following this line of investigation, we compute Isom(W_p(R)), the isometry group of the Wasserstein space
W_p(R) for all p \in [1,\infty) \setminus {2}. We show that W_2(R) is also exceptional regarding the
parameter p: W_p(R) is isometrically rigid if and only if p is not equal to 2. Regarding the underlying
space, we prove that the exceptionality of p = 2 disappears if we replace R by the compact
interval [0,1]. Surprisingly, in that case, W_p([0,1]) is isometrically rigid if and only if
p is not equal to 1. Moreover, W_1([0,1]) admits isometries that split mass, and Isom(W_1([0,1]))
cannot be embedded into Isom(W_1(R)).
AU - Geher, Gyorgy Pal
AU - Titkos, Tamas
AU - Virosztek, Daniel
ID - 7389
IS - 8
JF - Transactions of the American Mathematical Society
KW - Wasserstein space
KW - isometric embeddings
KW - isometric rigidity
KW - exotic isometry flow
SN - 00029947
TI - Isometric study of Wasserstein spaces - the real line
VL - 373
ER -