Isometric study of Wasserstein spaces - the real line

G.P. Geher, T. Titkos, D. Virosztek, Transactions of the American Mathematical Society 373 (2020) 5855–5883.


Journal Article | Published | English
Author
Geher, Gyorgy Pal; Titkos, Tamas; Virosztek, DanielIST Austria
Department
Abstract
Recently Kloeckner described the structure of the isometry group of the quadratic Wasserstein space W_2(R^n). It turned out that the case of the real line is exceptional in the sense that there exists an exotic isometry flow. Following this line of investigation, we compute Isom(W_p(R)), the isometry group of the Wasserstein space W_p(R) for all p \in [1,\infty) \setminus {2}. We show that W_2(R) is also exceptional regarding the parameter p: W_p(R) is isometrically rigid if and only if p is not equal to 2. Regarding the underlying space, we prove that the exceptionality of p = 2 disappears if we replace R by the compact interval [0,1]. Surprisingly, in that case, W_p([0,1]) is isometrically rigid if and only if p is not equal to 1. Moreover, W_1([0,1]) admits isometries that split mass, and Isom(W_1([0,1])) cannot be embedded into Isom(W_1(R)).
Publishing Year
Date Published
2020-08-01
Journal Title
Transactions of the American Mathematical Society
Volume
373
Issue
8
Page
5855-5883
ISSN
eISSN
IST-REx-ID

Cite this

Geher GP, Titkos T, Virosztek D. Isometric study of Wasserstein spaces - the real line. Transactions of the American Mathematical Society. 2020;373(8):5855-5883. doi:10.1090/tran/8113
Geher, G. P., Titkos, T., & Virosztek, D. (2020). Isometric study of Wasserstein spaces - the real line. Transactions of the American Mathematical Society, 373(8), 5855–5883. https://doi.org/10.1090/tran/8113
Geher, Gyorgy Pal, Tamas Titkos, and Daniel Virosztek. “Isometric Study of Wasserstein Spaces - the Real Line.” Transactions of the American Mathematical Society 373, no. 8 (2020): 5855–83. https://doi.org/10.1090/tran/8113.
G. P. Geher, T. Titkos, and D. Virosztek, “Isometric study of Wasserstein spaces - the real line,” Transactions of the American Mathematical Society, vol. 373, no. 8, pp. 5855–5883, 2020.
Geher GP, Titkos T, Virosztek D. 2020. Isometric study of Wasserstein spaces - the real line. Transactions of the American Mathematical Society. 373(8), 5855–5883.
Geher, Gyorgy Pal, et al. “Isometric Study of Wasserstein Spaces - the Real Line.” Transactions of the American Mathematical Society, vol. 373, no. 8, American Mathematical Society, 2020, pp. 5855–83, doi:10.1090/tran/8113.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data IST Research Explorer

Sources

arXiv 2002.00859

Search this title in

Google Scholar