Nondivergence form quasilinear heat equations driven by space-time white noise

M. Gerencser, Annales de l’Institut Henri Poincaré C, Analyse Non Linéaire 37 (2020) 663–682.


Journal Article | Published | English

Scopus indexed
Department
Abstract
We give a Wong-Zakai type characterisation of the solutions of quasilinear heat equations driven by space-time white noise in 1 + 1 dimensions. In order to show that the renormalisation counterterms are local in the solution, a careful arrangement of a few hundred terms is required. The main tool in this computation is a general ‘integration by parts’ formula that provides a number of linear identities for the renormalisation constants.
Publishing Year
Date Published
2020-05-01
Journal Title
Annales de l'Institut Henri Poincaré C, Analyse non linéaire
Volume
37
Issue
3
Page
663-682
ISSN
IST-REx-ID

Cite this

Gerencser M. Nondivergence form quasilinear heat equations driven by space-time white noise. Annales de l’Institut Henri Poincaré C, Analyse non linéaire. 2020;37(3):663-682. doi:10.1016/j.anihpc.2020.01.003
Gerencser, M. (2020). Nondivergence form quasilinear heat equations driven by space-time white noise. Annales de l’Institut Henri Poincaré C, Analyse Non Linéaire. Elsevier. https://doi.org/10.1016/j.anihpc.2020.01.003
Gerencser, Mate. “Nondivergence Form Quasilinear Heat Equations Driven by Space-Time White Noise.” Annales de l’Institut Henri Poincaré C, Analyse Non Linéaire. Elsevier, 2020. https://doi.org/10.1016/j.anihpc.2020.01.003.
M. Gerencser, “Nondivergence form quasilinear heat equations driven by space-time white noise,” Annales de l’Institut Henri Poincaré C, Analyse non linéaire, vol. 37, no. 3. Elsevier, pp. 663–682, 2020.
Gerencser M. 2020. Nondivergence form quasilinear heat equations driven by space-time white noise. Annales de l’Institut Henri Poincaré C, Analyse non linéaire. 37(3), 663–682.
Gerencser, Mate. “Nondivergence Form Quasilinear Heat Equations Driven by Space-Time White Noise.” Annales de l’Institut Henri Poincaré C, Analyse Non Linéaire, vol. 37, no. 3, Elsevier, 2020, pp. 663–82, doi:10.1016/j.anihpc.2020.01.003.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data IST Research Explorer

Sources

arXiv 1902.07635

Search this title in

Google Scholar