Anatomical specializations related to foraging in the visual system of a nocturnal insectivorous bird, the band-winged nightjar (Aves: Caprimulgiformes)

J.E. Salazar, D. Severin, T.A. Vega Zuniga, P. Fernández-Aburto, A. Deichler, M. Sallaberry A., J. Mpodozis, Brain, Behavior and Evolution 94 (2019) 27–36.

Download
No fulltext has been uploaded. References only!

Journal Article | Epub ahead of print | English
Author
; ; ; ; ; ;
Department
Abstract
Nocturnal animals that rely on their visual system for foraging, mating, and navigation usually exhibit specific traits associated with living in scotopic conditions. Most nocturnal birds have several visual specializations, such as enlarged eyes and an increased orbital convergence. However, the actual role of binocular vision in nocturnal foraging is still debated. Nightjars (Aves: Caprimulgidae) are predators that actively pursue and capture flying insects in crepuscular and nocturnal environments, mainly using a conspicuous “sit-and-wait” tactic on which pursuit begins with an insect flying over the bird that sits on the ground. In this study, we describe the visual system of the band-winged nightjar (Systellura longirostris), with emphasis on anatomical features previously described as relevant for nocturnal birds. Orbit convergence, determined by 3D scanning of the skull, was 73.28°. The visual field, determined by ophthalmoscopic reflex, exhibits an area of maximum binocular overlap of 42°, and it is dorsally oriented. The eyes showed a nocturnal-like normalized corneal aperture/axial length index. Retinal ganglion cells (RGCs) were relatively scant, and distributed in an unusual oblique-band pattern, with higher concentrations in the ventrotemporal quadrant. Together, these results indicate that the band-winged nightjar exhibits a retinal specialization associated with the binocular area of their dorsal visual field, a relevant area for pursuit triggering and prey attacks. The RGC distribution observed is unusual among birds, but similar to that of some visually dependent insectivorous bats, suggesting that those features might be convergent in relation to feeding strategies.
Publishing Year
Date Published
2019-11-21
Journal Title
Brain, Behavior and Evolution
Volume
94
Issue
1-4
Page
27-36
ISSN
eISSN
IST-REx-ID

Cite this

Salazar JE, Severin D, Vega Zuniga TA, et al. Anatomical specializations related to foraging in the visual system of a nocturnal insectivorous bird, the band-winged nightjar (Aves: Caprimulgiformes). Brain, Behavior and Evolution. 2019;94(1-4):27-36. doi:10.1159/000504162
Salazar, J. E., Severin, D., Vega Zuniga, T. A., Fernández-Aburto, P., Deichler, A., Sallaberry A., M., & Mpodozis, J. (2019). Anatomical specializations related to foraging in the visual system of a nocturnal insectivorous bird, the band-winged nightjar (Aves: Caprimulgiformes). Brain, Behavior and Evolution, 94(1–4), 27–36. https://doi.org/10.1159/000504162
Salazar, Juan Esteban, Daniel Severin, Tomas A Vega Zuniga, Pedro Fernández-Aburto, Alfonso Deichler, Michel Sallaberry A., and Jorge Mpodozis. “Anatomical Specializations Related to Foraging in the Visual System of a Nocturnal Insectivorous Bird, the Band-Winged Nightjar (Aves: Caprimulgiformes).” Brain, Behavior and Evolution 94, no. 1–4 (2019): 27–36. https://doi.org/10.1159/000504162.
J. E. Salazar et al., “Anatomical specializations related to foraging in the visual system of a nocturnal insectivorous bird, the band-winged nightjar (Aves: Caprimulgiformes),” Brain, Behavior and Evolution, vol. 94, no. 1–4, pp. 27–36, 2019.
Salazar JE, Severin D, Vega Zuniga TA, Fernández-Aburto P, Deichler A, Sallaberry A. M, Mpodozis J. 2019. Anatomical specializations related to foraging in the visual system of a nocturnal insectivorous bird, the band-winged nightjar (Aves: Caprimulgiformes). Brain, Behavior and Evolution. 94(1–4), 27–36.
Salazar, Juan Esteban, et al. “Anatomical Specializations Related to Foraging in the Visual System of a Nocturnal Insectivorous Bird, the Band-Winged Nightjar (Aves: Caprimulgiformes).” Brain, Behavior and Evolution, vol. 94, no. 1–4, Karger, 2019, pp. 27–36, doi:10.1159/000504162.

Export

Marked Publications

Open Data IST Research Explorer

Sources

PMID: 31751995
PubMed | Europe PMC

Search this title in

Google Scholar