Algebraic methods in the congested clique

K. Censor-Hillel, P. Kaski, J. Korhonen, C. Lenzen, A. Paz, J. Suomela, Distributed Computing 32 (2019) 461–478.


Journal Article | Published | English
Author
; ; ; ; ;
Abstract
In this work, we use algebraic methods for studying distance computation and subgraph detection tasks in the congested clique model. Specifically, we adapt parallel matrix multiplication implementations to the congested clique, obtaining an O(n1−2/ω) round matrix multiplication algorithm, where ω<2.3728639 is the exponent of matrix multiplication. In conjunction with known techniques from centralised algorithmics, this gives significant improvements over previous best upper bounds in the congested clique model. The highlight results include: 1. triangle and 4-cycle counting in O(n0.158) rounds, improving upon the O(n1/3) algorithm of Dolev et al. [DISC 2012], 2. a (1+o(1))-approximation of all-pairs shortest paths in O(n0.158) rounds, improving upon the O~(n1/2)-round (2+o(1))-approximation algorithm given by Nanongkai [STOC 2014], and 3. computing the girth in O(n0.158) rounds, which is the first non-trivial solution in this model. In addition, we present a novel constant-round combinatorial algorithm for detecting 4-cycles.
Publishing Year
Date Published
2019-12-01
Journal Title
Distributed Computing
Volume
32
Issue
6
Page
461-478
IST-REx-ID

Cite this

Censor-Hillel K, Kaski P, Korhonen J, Lenzen C, Paz A, Suomela J. Algebraic methods in the congested clique. Distributed Computing. 2019;32(6):461-478. doi:10.1007/s00446-016-0270-2
Censor-Hillel, K., Kaski, P., Korhonen, J., Lenzen, C., Paz, A., & Suomela, J. (2019). Algebraic methods in the congested clique. Distributed Computing, 32(6), 461–478. https://doi.org/10.1007/s00446-016-0270-2
Censor-Hillel, Keren, Petteri Kaski, Janne Korhonen, Christoph Lenzen, Ami Paz, and Jukka Suomela. “Algebraic Methods in the Congested Clique.” Distributed Computing 32, no. 6 (2019): 461–78. https://doi.org/10.1007/s00446-016-0270-2.
K. Censor-Hillel, P. Kaski, J. Korhonen, C. Lenzen, A. Paz, and J. Suomela, “Algebraic methods in the congested clique,” Distributed Computing, vol. 32, no. 6, pp. 461–478, 2019.
Censor-Hillel K, Kaski P, Korhonen J, Lenzen C, Paz A, Suomela J. 2019. Algebraic methods in the congested clique. Distributed Computing. 32(6), 461–478.
Censor-Hillel, Keren, et al. “Algebraic Methods in the Congested Clique.” Distributed Computing, vol. 32, no. 6, Springer Nature, 2019, pp. 461–78, doi:10.1007/s00446-016-0270-2.

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data IST Research Explorer

Sources

arXiv 1503.04963

Search this title in

Google Scholar