TY - JOUR
AB - We find a graph of genus 5 and its drawing on the orientable surface of genus 4 with every pair of independent edges crossing an even number of times. This shows that the strong Hanani–Tutte theorem cannot be extended to the orientable surface of genus 4. As a base step in the construction we use a counterexample to an extension of the unified Hanani–Tutte theorem on the torus.
AU - Fulek, Radoslav
AU - Kynčl, Jan
ID - 7034
IS - 6
JF - Combinatorica
SN - 0209-9683
TI - Counterexample to an extension of the Hanani-Tutte theorem on the surface of genus 4
VL - 39
ER -