---
res:
bibo_abstract:
- "The central object of investigation of this paper is the Hirzebruch class, a\r\ndeformation
of the Todd class, given by Hirzebruch (for smooth varieties) in\r\nhis celebrated
book \"Topological Methods in Algebraic Geometry\". The\r\ngeneralization for
singular varieties is due to Brasselet-Sch\\\"urmann-Yokura.\r\nFollowing the
work of Weber, we investigate its equivariant version for\r\n(possibly singular)
toric varieties. The local decomposition of the Hirzebruch\r\nclass to the fixed
points of the torus action and a formula for the local class\r\nin terms of the
defining fan are mentioned. After this review part, we prove\r\nthe positivity
of local Hirzebruch classes for all toric varieties, thus\r\nproving false the
alleged counterexample given by Weber.@eng"
bibo_authorlist:
- foaf_Person:
foaf_givenName: Kamil P
foaf_name: Rychlewicz, Kamil P
foaf_surname: Rychlewicz
foaf_workInfoHomepage: http://www.librecat.org/personId=85A07246-A8BF-11E9-B4FA-D9E3E5697425
dct_date: 2019^xs_gYear
dct_language: eng
dct_publisher: ArXiv@
dct_title: The positivity of local equivariant Hirzebruch class for toric varieties@
...