The positivity of local equivariant Hirzebruch class for toric varieties

K.P. Rychlewicz, ArXiv (n.d.).

Preprint | Draft | English
Abstract
The central object of investigation of this paper is the Hirzebruch class, a deformation of the Todd class, given by Hirzebruch (for smooth varieties) in his celebrated book "Topological Methods in Algebraic Geometry". The generalization for singular varieties is due to Brasselet-Sch\"urmann-Yokura. Following the work of Weber, we investigate its equivariant version for (possibly singular) toric varieties. The local decomposition of the Hirzebruch class to the fixed points of the torus action and a formula for the local class in terms of the defining fan are mentioned. After this review part, we prove the positivity of local Hirzebruch classes for all toric varieties, thus proving false the alleged counterexample given by Weber.
Publishing Year
Date Published
2019-10-23
Journal Title
arXiv
Page
14
IST-REx-ID

Cite this

Rychlewicz KP. The positivity of local equivariant Hirzebruch class for toric varieties. arXiv.
Rychlewicz, K. P. (n.d.). The positivity of local equivariant Hirzebruch class for toric varieties. ArXiv. ArXiv.
Rychlewicz, Kamil P. “The Positivity of Local Equivariant Hirzebruch Class for Toric Varieties.” ArXiv. ArXiv, n.d.
K. P. Rychlewicz, “The positivity of local equivariant Hirzebruch class for toric varieties,” arXiv. ArXiv.
Rychlewicz KP. The positivity of local equivariant Hirzebruch class for toric varieties. arXiv.
Rychlewicz, Kamil P. “The Positivity of Local Equivariant Hirzebruch Class for Toric Varieties.” ArXiv, ArXiv.

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data IST Research Explorer

Sources

arXiv 1910.10435

Search this title in

Google Scholar