@article{6955,
abstract = {We study few-body bound states of charged particles subject to attractive zero-range/short-range plus repulsive Coulomb interparticle forces. The characteristic length scales of the system at zero energy are set by the Coulomb length scale D and the Coulomb-modified effective range r eff. We study shallow bound states of charged particles with D >> r eff and show that these systems obey universal scaling laws different from neutral particles. An accurate description of these states requires both the Coulomb-modified scattering length and the effective range unless the Coulomb interaction is very weak (D -> ). Our findings are relevant for bound states whose spatial extent is significantly larger than the range of the attractive potential. These states enjoy universality – their character is independent of the shape of the short-range potential.},
author = {Schmickler, C.H. and Hammer, H.-W. and Volosniev, Artem},
issn = {0370-2693},
journal = {Physics Letters B},
publisher = {Elsevier},
title = {{Universal physics of bound states of a few charged particles}},
doi = {10.1016/j.physletb.2019.135016},
volume = {798},
year = {2019},
}