HCN channel-mediated neuromodulation can control action potential velocity and fidelity in central axons

N. Byczkowicz, A. Eshra, J.-C. Montanaro-Punzengruber, A. Trevisiol, J. Hirrlinger, M.H. Kole, R. Shigemoto, S. Hallermann, ELife 8 (2019) e42766.

Download
OA 4.01 MB

Journal Article | Published | English
Author
; ; ; ; ; ; ;
Department
Abstract
Hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels control electrical rhythmicity and excitability in the heart and brain, but the function of HCN channels at the subcellular level in axons remains poorly understood. Here, we show that the action potential conduction velocity in both myelinated and unmyelinated central axons can be bidirectionally modulated by a HCN channel blocker, cyclic adenosine monophosphate (cAMP), and neuromodulators. Recordings from mouse cerebellar mossy fiber boutons show that HCN channels ensure reliable high-frequency firing and are strongly modulated by cAMP (EC50 40 mM; estimated endogenous cAMP concentration 13 mM). In addition, immunogold-electron microscopy revealed HCN2 as the dominating subunit in cerebellar mossy fibers. Computational modeling indicated that HCN2 channels control conduction velocity primarily by altering the resting membrane potential and are associated with significant metabolic costs. These results suggest that the cAMP-HCN pathway provides neuromodulators with an opportunity to finely tune energy consumption and temporal delays across axons in the brain.
Publishing Year
Date Published
2019-09-09
Journal Title
eLife
Volume
8
Article Number
e42766
eISSN
IST-REx-ID

Cite this

Byczkowicz N, Eshra A, Montanaro-Punzengruber J-C, et al. HCN channel-mediated neuromodulation can control action potential velocity and fidelity in central axons. eLife. 2019;8:e42766. doi:10.7554/eLife.42766
Byczkowicz, N., Eshra, A., Montanaro-Punzengruber, J.-C., Trevisiol, A., Hirrlinger, J., Kole, M. H., … Hallermann, S. (2019). HCN channel-mediated neuromodulation can control action potential velocity and fidelity in central axons. ELife, 8, e42766. https://doi.org/10.7554/eLife.42766
Byczkowicz, Niklas, Abdelmoneim Eshra, Jacqueline-Claire Montanaro-Punzengruber, Andrea Trevisiol, Johannes Hirrlinger, Maarten Hp Kole, Ryuichi Shigemoto, and Stefan Hallermann. “HCN Channel-Mediated Neuromodulation Can Control Action Potential Velocity and Fidelity in Central Axons.” ELife 8 (2019): e42766. https://doi.org/10.7554/eLife.42766.
N. Byczkowicz et al., “HCN channel-mediated neuromodulation can control action potential velocity and fidelity in central axons,” eLife, vol. 8, p. e42766, 2019.
Byczkowicz N, Eshra A, Montanaro-Punzengruber J-C, Trevisiol A, Hirrlinger J, Kole MH, Shigemoto R, Hallermann S. 2019. HCN channel-mediated neuromodulation can control action potential velocity and fidelity in central axons. eLife. 8, e42766.
Byczkowicz, Niklas, et al. “HCN Channel-Mediated Neuromodulation Can Control Action Potential Velocity and Fidelity in Central Axons.” ELife, vol. 8, eLife Sciences Publications, 2019, p. e42766, doi:10.7554/eLife.42766.
All files available under the following license(s):
Creative Commons License:
CC-BYCreative Commons Attribution 4.0 International Public License (CC-BY 4.0)
Main File(s)
File Name
Access Level
OA Open Access
Last Uploaded
2019-09-16T13:14:33Z


Export

Marked Publications

Open Data IST Research Explorer

Search this title in

Google Scholar