TY - JOUR
AB - Fitting a function by using linear combinations of a large number N of `simple' components is one of the most fruitful ideas in statistical learning. This idea lies at the core of a variety of methods, from two-layer neural networks to kernel regression, to boosting. In general, the resulting risk minimization problem is non-convex and is solved by gradient descent or its variants. Unfortunately, little is known about global convergence properties of these approaches.
Here we consider the problem of learning a concave function f on a compact convex domain Ω⊆ℝd, using linear combinations of `bump-like' components (neurons). The parameters to be fitted are the centers of N bumps, and the resulting empirical risk minimization problem is highly non-convex. We prove that, in the limit in which the number of neurons diverges, the evolution of gradient descent converges to a Wasserstein gradient flow in the space of probability distributions over Ω. Further, when the bump width δ tends to 0, this gradient flow has a limit which is a viscous porous medium equation. Remarkably, the cost function optimized by this gradient flow exhibits a special property known as displacement convexity, which implies exponential convergence rates for N→∞, δ→0. Surprisingly, this asymptotic theory appears to capture well the behavior for moderate values of δ,N. Explaining this phenomenon, and understanding the dependence on δ,N in a quantitative manner remains an outstanding challenge.
AU - Javanmard, Adel
AU - Mondelli, Marco
AU - Montanari, Andrea
ID - 6748
IS - 6
JF - Annals of Statistics
TI - Analysis of a two-layer neural network via displacement convexity
VL - 48
ER -