Finding a Nash equilibrium is no easier than breaking Fiat-Shamir

A.R. Choudhuri, P. Hubáček, C. Kamath Hosdurg, K.Z. Pietrzak, A. Rosen, G.N. Rothblum, in:, Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing  - STOC 2019, ACM Press, 2019, pp. 1103–1114.

Download
No fulltext has been uploaded. References only!

Conference Paper | Published | English
Author
; ; ; ; ;
Department
Abstract
The Fiat-Shamir heuristic transforms a public-coin interactive proof into a non-interactive argument, by replacing the verifier with a cryptographic hash function that is applied to the protocol’s transcript. Constructing hash functions for which this transformation is sound is a central and long-standing open question in cryptography. We show that solving the END−OF−METERED−LINE problem is no easier than breaking the soundness of the Fiat-Shamir transformation when applied to the sumcheck protocol. In particular, if the transformed protocol is sound, then any hard problem in #P gives rise to a hard distribution in the class CLS, which is contained in PPAD. Our result opens up the possibility of sampling moderately-sized games for which it is hard to find a Nash equilibrium, by reducing the inversion of appropriately chosen one-way functions to #SAT. Our main technical contribution is a stateful incrementally verifiable procedure that, given a SAT instance over n variables, counts the number of satisfying assignments. This is accomplished via an exponential sequence of small steps, each computable in time poly(n). Incremental verifiability means that each intermediate state includes a sumcheck-based proof of its correctness, and the proof can be updated and verified in time poly(n).
Publishing Year
Date Published
2019-06-01
Proceedings Title
Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing - STOC 2019
Page
1103-1114
Conference
STOC: Symposium on Theory of Computing
Conference Location
Phoenix, AZ, United States
Conference Date
2019-06-23 – 2019-06-26
IST-REx-ID

Cite this

Choudhuri AR, Hubáček P, Kamath Hosdurg C, Pietrzak KZ, Rosen A, Rothblum GN. Finding a Nash equilibrium is no easier than breaking Fiat-Shamir. In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing  - STOC 2019. ACM Press; 2019:1103-1114. doi:10.1145/3313276.3316400
Choudhuri, A. R., Hubáček, P., Kamath Hosdurg, C., Pietrzak, K. Z., Rosen, A., & Rothblum, G. N. (2019). Finding a Nash equilibrium is no easier than breaking Fiat-Shamir. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing  - STOC 2019 (pp. 1103–1114). Phoenix, AZ, United States: ACM Press. https://doi.org/10.1145/3313276.3316400
Choudhuri, Arka Rai, Pavel Hubáček, Chethan Kamath Hosdurg, Krzysztof Z Pietrzak, Alon Rosen, and Guy N. Rothblum. “Finding a Nash Equilibrium Is No Easier than Breaking Fiat-Shamir.” In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing  - STOC 2019, 1103–14. ACM Press, 2019. https://doi.org/10.1145/3313276.3316400.
A. R. Choudhuri, P. Hubáček, C. Kamath Hosdurg, K. Z. Pietrzak, A. Rosen, and G. N. Rothblum, “Finding a Nash equilibrium is no easier than breaking Fiat-Shamir,” in Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing  - STOC 2019, Phoenix, AZ, United States, 2019, pp. 1103–1114.
Choudhuri AR, Hubáček P, Kamath Hosdurg C, Pietrzak KZ, Rosen A, Rothblum GN. 2019. Finding a Nash equilibrium is no easier than breaking Fiat-Shamir. Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing  - STOC 2019. STOC: Symposium on Theory of Computing 1103–1114.
Choudhuri, Arka Rai, et al. “Finding a Nash Equilibrium Is No Easier than Breaking Fiat-Shamir.” Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing  - STOC 2019, ACM Press, 2019, pp. 1103–14, doi:10.1145/3313276.3316400.

Export

Marked Publications

Open Data IST Research Explorer

Search this title in

Google Scholar
ISBN Search