TY - CONF
AB - The Tverberg theorem is one of the cornerstones of discrete geometry. It states that, given a set X of at least (d+1)(r-1)+1 points in R^d, one can find a partition X=X_1 cup ... cup X_r of X, such that the convex hulls of the X_i, i=1,...,r, all share a common point. In this paper, we prove a strengthening of this theorem that guarantees a partition which, in addition to the above, has the property that the boundaries of full-dimensional convex hulls have pairwise nonempty intersections. Possible generalizations and algorithmic aspects are also discussed. As a concrete application, we show that any n points in the plane in general position span floor[n/3] vertex-disjoint triangles that are pairwise crossing, meaning that their boundaries have pairwise nonempty intersections; this number is clearly best possible. A previous result of Alvarez-Rebollar et al. guarantees floor[n/6] pairwise crossing triangles. Our result generalizes to a result about simplices in R^d,d >=2.
AU - Fulek, Radoslav
AU - GĂ¤rtner, Bernd
AU - Kupavskii, Andrey
AU - Valtr, Pavel
AU - Wagner, Uli
ID - 6647
SN - 1868-8969
T2 - 35th International Symposium on Computational Geometry
TI - The crossing Tverberg theorem
VL - 129
ER -