On a certain non-split cubic surface

R. De La Bretèche, K.N. Destagnol, J. Liu, J. Wu, Y. Zhao, Science China Mathematics (2019).


Journal Article | Epub ahead of print | English
Author
; ; ; ;
Department
Abstract
This paper establishes an asymptotic formula with a power-saving error term for the number of rational points of bounded height on the singular cubic surface of ℙ3ℚ given by the following equation 𝑥0(𝑥21+𝑥22)−𝑥33=0 in agreement with the Manin-Peyre conjectures.
Publishing Year
Date Published
2019-06-21
Journal Title
Science China Mathematics
ISSN
IST-REx-ID

Cite this

De La Bretèche R, Destagnol KN, Liu J, Wu J, Zhao Y. On a certain non-split cubic surface. Science China Mathematics. 2019. doi:10.1007/s11425-018-9543-8
De La Bretèche, R., Destagnol, K. N., Liu, J., Wu, J., & Zhao, Y. (2019). On a certain non-split cubic surface. Science China Mathematics. https://doi.org/10.1007/s11425-018-9543-8
De La Bretèche, Régis, Kevin N Destagnol, Jianya Liu, Jie Wu, and Yongqiang Zhao. “On a Certain Non-Split Cubic Surface.” Science China Mathematics, 2019. https://doi.org/10.1007/s11425-018-9543-8.
R. De La Bretèche, K. N. Destagnol, J. Liu, J. Wu, and Y. Zhao, “On a certain non-split cubic surface,” Science China Mathematics, 2019.
De La Bretèche R, Destagnol KN, Liu J, Wu J, Zhao Y. 2019. On a certain non-split cubic surface. Science China Mathematics.
De La Bretèche, Régis, et al. “On a Certain Non-Split Cubic Surface.” Science China Mathematics, Springer, 2019, doi:10.1007/s11425-018-9543-8.

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data IST Research Explorer

Sources

arXiv 1709.09476

Search this title in

Google Scholar