@article{662, abstract = {We report a direct-numerical-simulation study of the Taylor-Couette flow in the quasi-Keplerian regime at shear Reynolds numbers up to (105). Quasi-Keplerian rotating flow has been investigated for decades as a simplified model system to study the origin of turbulence in accretion disks that is not fully understood. The flow in this study is axially periodic and thus the experimental end-wall effects on the stability of the flow are avoided. Using optimal linear perturbations as initial conditions, our simulations find no sustained turbulence: the strong initial perturbations distort the velocity profile and trigger turbulence that eventually decays.}, author = {Shi, Liang and Hof, Björn and Rampp, Markus and Avila, Marc}, issn = {10706631}, journal = {Physics of Fluids}, number = {4}, publisher = {American Institute of Physics}, title = {{Hydrodynamic turbulence in quasi Keplerian rotating flows}}, doi = {10.1063/1.4981525}, volume = {29}, year = {2017}, }