Poisson-Delaunay mosaics of order k

H. Edelsbrunner, A. Nikitenko, ArXiv:1709.09380 (n.d.).

Preprint | Draft | English
Department
Abstract
The order-k Voronoi tessellation of a locally finite set X⊆ℝn decomposes ℝn into convex domains whose points have the same k nearest neighbors in X. Assuming X is a stationary Poisson point process, we give explicit formulas for the expected number and total area of faces of a given dimension per unit volume of space. We also develop a relaxed version of discrete Morse theory and generalize by counting only faces, for which the k nearest points in X are within a given distance threshold.
Publishing Year
Date Published
2017-09-27
Journal Title
arXiv:1709.09380
Page
11
IST-REx-ID

Cite this

Edelsbrunner H, Nikitenko A. Poisson-Delaunay mosaics of order k. arXiv:170909380.
Edelsbrunner, H., & Nikitenko, A. (n.d.). Poisson-Delaunay mosaics of order k. ArXiv:1709.09380.
Edelsbrunner, Herbert, and Anton Nikitenko. “Poisson-Delaunay Mosaics of Order K.” ArXiv:1709.09380, n.d.
H. Edelsbrunner and A. Nikitenko, “Poisson-Delaunay mosaics of order k,” arXiv:1709.09380. .
Edelsbrunner H, Nikitenko A. Poisson-Delaunay mosaics of order k. arXiv:1709.09380.
Edelsbrunner, Herbert, and Anton Nikitenko. “Poisson-Delaunay Mosaics of Order K.” ArXiv:1709.09380.

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data IST Research Explorer

Sources

arXiv 1709.09380

Search this title in

Google Scholar